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ABSTRACT
A hyperspectral (HS) image has high spectral resolution infor-

mation but low spatial resolution information. To get an HS image
of high spatial and spectral resolution (high-spatial HS image), fu-
sion techniques are actively studied, which synthesize an HS image
of low spatial and high spectral resolution and a multispectral (MS)
image. The techniques can generate a high-spatial HS image by ex-
ploiting the high spectral and spatial resolution information of HS
and MS images, respectively. However, the methods do not eval-
uate the edge similarity between generated HS and observed MS
images, and do not denoise the MS image. As a result, when an ob-
served MS image is noisy, these methods produce artifacts and spec-
tral distortion. To tackle this problem, we propose a new HS and
MS data fusion method using a hybrid spatio-spectral total variation
(HSSTV), which is a regularization for HS image restoration. The
method not only generates a high-spatial HS image but also denoises
a given MS image, so that we obtain a high-spatial HS image even if
the observed images are contaminated by noise. In the experiments,
we demonstrate the advantages of our method over existing fusion
methods and the effectiveness of HSSTV for MS image restoration.

Index Terms— hyperspectral image, multispectral image, im-
age fusion, primal-dual splitting

1. INTRODUCTION

Hyperspectral (HS) imaging is a powerful technology as observing
the material characteristic beyond one’s vision. An HS image has
invisible and narrow interval spectral information, and is used in
many applications in a wide range of fields, e.g., agriculture, medi-
cal science and remote sensing [1, 2]. Since high spatial resolution
information localizes the object, and high spectral resolution infor-
mation stands for the true material property, the applications require
an HS image of high spatial and spectral resolution (a high-spatial
HS image). However, capturing a high-spatial HS image is a very
challenging task for tradeoffs between both resolutions.

HS and multispectral (MS) data fusion merges images of differ-
ent spatial and spectral resolutions, i.e., an HS image of low spatial
resolution (a low-spatial HS image) and an MS image, to generate a
high-spatial HS image. Here, an MS image has high spatial but low
spectral resolution. These techniques can solve the above problem,
so that it has been actively studied [3].

The methods of HS and MS data fusion create a high-spatial HS
image by utilizing spatial information in the MS image and spec-
tral information in the low-spatial HS image. In [4, 5], the meth-
ods are based on Gram-Schmidt (GS) or multiresolution analysis
(MRA), and fusion low-spatial HS and MS images bandwise. How-
ever, they do not use a-priori knowledge on HS images (especially
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spectral piecewise smoothness), so that the results have artifacts.
On the other hands, some fusion methods use a-priori knowledge
to generate a high-spatial HS image. As a result, they achieve high-
quality fusion, which are based on unmixing [6–9], Bayesian prob-
ability [10, 11], and both [12]. However, since the methods do not
denoise the MS image, the results have artifacts and spectral distor-
tion when the MS image is noisy.

To overcome the above problems, we propose a novel method
of HS and MS data fusion. The method fuses them by solving a
newly-formulated convex optimization problem. It simultaneously
generates a high-spatial HS image and denoises an MS image for
high-quality fusion. In addition, the proposed method can restore
detailed structure, because it evaluates edge similarity between them.
We provide an algorithm to solve the problem based on a primal-dual
splitting method [13]. Our experiments illustrate the strength of the
proposed method by comparison with existing methods.

2. PROPOSED METHOD

2.1. Observation Model

Let ū ∈ RNBh be a true high-spatial HS image, where N is the
number of pixel, and Bh is a spectral bands number of the HS image.
For HS and MS fusion, we assume observation models of a low-
spatial HS image vh and an observed MS image vm as follows:

vh = SBū+ nh ∈ R
NBh

r , (1)

vm = Rū+ nm ∈ RNBm , (2)

where S ∈ R
NBh

r
×NBh is a downsampling matrix with a down-

sampling rate of r that divides N , B is a blur matrix, nh and nm

are additive white Gaussian noises with standard deviation σh and
σm, respectively, and Bm is a number of spectral bands of the MS
image. Since an MS image contains less noise than an HS image,
we assume σh > σm. Moreover, R ∈ RNBm×NBh is a matrix re-
garding the property of MS sensor. Specifically, R calculates partial
weighted average along the spectral direction. In general, since HS
and MS images are contaminated by noise, the setting is realistic.

2.2. Problem Formulation

We propose an HS and MS fusion problem using a hybrid spatio-
spectral total variaton (HSSTV) [14]. Here, HSSTV is a regular-
ization function for HS image restoration, and we proposed it at
ICASSP 2017. The regularization simultaneously evaluates both
spatio-spectral piecewise smoothness and direct spatial piecewise
smoothness, and it is defined as follows:

HSSTV(u, ω) := ∥Aωu∥1,p :=

∥∥∥∥[ DDb

ωD

]
u

∥∥∥∥
1,p

,
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Algorithm 1: PDS method for Prob. (3)

input : u(0),y(0)
1 , y(0)

2 , y(0)
3 , γ1, γ2, vh, vm, ε, η

1 while A stopping criterion is not satisfied do do
2 u

(n+1)
h = proxγ1,ι[µuh

, µuh
]NBh

(u
(n)
h −

γ1(A⊤
ωh

y
(n)
1 +D⊤y

(n)
2 +B⊤S⊤y

(n)
4 ));

3 u
(n+1)
m = proxγ1,ι[µum, µum ]NBm

(u
(n)
m −

γ1(−M⊤D⊤y2 +A⊤
ωm

y
(n)
3 + y

(n)
5 ));

4 y
(n)
1 ← y

(n)
1 + γ2Aωh (2u

(n+1)
h − u

(n)
h );

5 y
(n)
2 ←
y
(n)
2 +γ2(D(2u

(n+1)
h −u

(n)
h )−DM(2u

(n+1)
m −u

(n)
m ));

6 y
(n)
3 ← y

(n)
3 + γ2Aωm (2u

(n+1)
m − u

(n)
m );

7 y
(n)
4 ← y

(n)
4 + γ2SB(2u

(n+1)
h − u

(n)
h );

8 y
(n)
5 ← y

(n)
5 + γ2(2u

(n+1)
m − u

(n)
m );

9 y
(n+1)
1 = y

(n)
1 − γ2 prox 1

γ2
,∥·∥1,p

(
y
(n)
1
γ2

)
;

10 y
(n+1)
2 = y

(n)
2 − γ2 prox λ

γ2
,∥·∥1,2

(
y
(n)
2
γ2

)
;

11 y
(n+1)
3 = y

(n)
3 − γ2 prox 1

γ2
,∥·∥1,p

(
y
(n)
3
γ2

)
;

12 y
(n+1)
4 = y

(n)
4 − γ2 prox 1

γ2
,ι

B
vh
2,ε

(
y
(n)
4
γ2

)
;

13 y
(n+1)
5 = y

(n)
5 − γ2 prox 1

γ2
,ιBvm

2,η

(
y
(n)
5
γ2

)
;

14 n← n+ 1;

where D := (D⊤
v D

⊤
h )

⊤ is a spatial difference operator, Dv , Dh

and Db are a vertical, horizontal and spectral difference operator,
respectively, and ∥ · ∥1,p is the mixed ℓ1,p norm (in [14], p = 1
or 2). The parameter ω balances between a spatio-spectral and a
direct spatial difference operator, and by setting it suitable value, it
can restore a higher quality HS image than existing regularization
for HS image restoration.

Based on the model in Sec. 2.1, an HS and MS fusion problem
using HSSTV is formulated by

min
uh,um

HSSTV(uh, ωh) + λ∥Duh −DMum∥1,2

+HSSTV(um, ωm)

s.t.


SBuh ∈ Bvh

2,ε := {x ∈ R
NBh

r |∥x− vh∥ ≤ ε},
um ∈ Bvm

2,η := {x ∈ RNBm |∥x− vm∥ ≤ η},
uh ∈ [µuh , µuh ]

NBh ,

um ∈ [µum , µum ]NBm ,

(3)

where ∥ · ∥1,2 is the mixed ℓ1,2 norm, and M ∈ RNBh×NBm is a
linear operator that expands the MS image along the spectral direc-
tion. The problem not only generates a high-spatial HS image uh

but also denoises an MS image um, leading to high-quality fusion.
The first and third terms in Prob. (3) are HSSTV. The problem

uses HSSTV for both denoising an MS image and generating a high-
spatial HS image. It is because an MS image has a spatio-spectral
piecewise smoothness similar to an HS image. Since the balance be-
tween both piecewise smoothness would be different, the ωh and ωm

are independently set. The second term in Prob. (3) evaluates edge
similarity between HS and MS images by taking differences between
edge images of generated HS and denoised MS images. Here, we as-

sume that the non-zero differences of the high-spatial HS image are
a sparse edge image, and the edges of the high-spatial HS and MS
images locate in the same position.

The first and second constraints in (3) serves as data-fidelity to
the low-spatial HS image vh and the observed MS image vm. The
set Bvh

2,ε is defined as the vh-centered ℓ2-norm ball with the radius
ε > 0, and Bvm

2,η is also defined as the vm-centered ℓ2-norm ball
with the radius η > 0. In the hard constraints type of problem,
the parameter settings are relatively easy because they have a clear
meaning. It is mentioned by [14–18]. The third and forth constraints
in (3) are the dynamic range of HS and MS images, respectively.

2.3. Optimization

We adopt a primal-dual splitting method [13] to solve Prob. (3). It
is because the problem is a highly nonsmooth convex optimization
problem. The algorithm can solve convex optimization problems of
the form:

min
x

g(x) + h(Lx), (4)

where L is a linear operator. In addition, g and h are proper lower
semicontinuous convex functions and are assumed to be proximable.
Here, proximable means that the proximity operators1 [19] of g and
h are computable.

For any y(0), the algorithm is given by⌊
u(n+1) = proxγ1g

(u(n) − γ1L
⊤y(n)),

y(n+1) = proxγ2h∗(y(n) + γ2L(2u
(n+1) − u(n))),

where γ1, γ2 > 0 are stepsizes of the primal-dual splitting method,
and need to satisfy γ1γ2∥L∥2op ≤ 1 (∥ · ∥op is the operator norm) to
converge the algorithm. The function h∗ is the convex conjugate of
h, and the proximity operator of h∗ is available via that of h [20,
Theorem 14.3(ii)] as follows:

proxγh∗(x) = x− γ prox 1
γ
h(

1
γ
x). (5)

To solve Prob. (3) using the primal-dual splitting method, we refor-
mulate Prob. (3) into Prob. (4).

First, since the four hard constraint in Prob. (3) are put into the
objective function, we introduce the indicator function, which is de-
fined by

ιC(x) :=

{
0, if x ∈ C,
∞, otherwise,

where C is a nonempty closed convex set. With this in mind,
Prob. (3) can be rewritten as

min
uh,um

∥Aωhuh∥1,p + λ∥Duh −DMum∥1,2 + ∥Aωmum∥1,p

+ ιBvh
2,ε

(SBuh) + ιBvm
2,η

(um) + ι[µuh
,µuh

]NBh (uh)

+ ι[µum ,µum ]NBm (uh). (6)

As the definition of the indicator function, Prob. (3) and Prob. (6) are
equivalent.

1The proximity operator of index γ > 0 of a proper lower semicontinuous
convex function f is defined by proxγf (x) := argmin

y
f(y)+ 1

2γ
∥y−x∥2.
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Table 1. Quality measures for σm = 0.04 (left) and σm = 0.06 (right) averaged all HS images.
σm = 0.04 σm = 0.08

PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n

MTF-GLP [5] 22.80 10.45 7.557 0.4937 22.28 11.09 7.905 0.4649
CNMF [6] 26.40 9.139 6.104 0.6264 24.25 10.68 7.211 0.5273

HySure [12] 28.65 8.354 7.511 0.6836 27.93 7.676 7.448 0.6550
MAPSMM [10] 24.06 10.39 14.00 0.4973 23.49 11.12 14.53 0.4658

proposed (HTV, p = 1) 29.79 5.103 4.459 0.7110 28.64 5.277 4.931 0.6790
proposed (HTV, p = 2) 29.89 5.020 4.386 0.7163 28.70 5.209 4.866 0.6832

proposed (HSSTV, p = 1) 29.86 5.774 5.062 0.7179 28.56 6.062 5.569 0.6829
proposed (HSSTV, p = 2 29.95 5.711 5.006 0.7231 28.64 6.002 5.513 0.6880

By letting

g : RN(Bh+Bm) → R2 : (uh,um) 7→
(ι[µuh

,µuh
]NBh (uh), ι[µum ,µum ]NBm (um)),

h : R((6+
1
r )Bh+5Bm)N → R ∪ {∞} : (y1,y2,y3,y4,y5) 7→

∥y1∥1,p + λ∥y2∥1,2 + ∥y3∥1,p + ιBvh
2,ε

(y4) + ιBvm
2,η

(y5),

L : RN(Bh+Bm) → R((6+
1
r )Bh+5Bm)N : (uh,um) 7→

(Aωhuh,Duh −DMum,Aωmum,SBuh,um),

Prob. (6) come down to Prob. (4). By using (5), the algorithm for
solving Prob. (3) is derived as Algorithm 1.

We explain the proximity operators in Alg. 1. First, the proxim-
ity operator of the indicator function of C is equivalent to the metric
projection on to C, which are defined by

proxγιC
(x) := min

y
∥x− y∥ s.t. x ∈ C =: PC(x).

The proximity operators in steps 2, 3, 12, and 13 can be computed
as follows: for i = 1, . . . , NB

[proxγι
[µ·,µ·]NB

(x)]i = [P[µ·,µ·]NB (x)]i

= min{max{xi, µ·}, µ·},

proxγιBv·
2,ε

(x) = PBv·
2,ε

(x) =

{
x, if x ∈ Bv·

2,ε,

v· +
ε(x−v·)
∥x−v·∥2

, otherwise.

Meanwhile, the proximity operators of the ℓ1 norm and the mixed
ℓ1,2 norm in steps 9, 10, and 11 are reduced to simple soft-
thresholding type operations: for γ > 0 and for i = 1, . . . , 2NB,

[proxγ∥·∥1(x)]i = sgn(xi)max {|xi| − γ, 0} ,

[proxγ∥·∥1,2(x)]i = max

{
1− γ

(∑1
j=0 x

2
ĩ+jNB·

)− 1
2
, 0

}
xi,

where sgn is the sign function, and ĩ := ((i− 1) mod NB·) + 1.

3. EXPERIMENTS

We demonstrate the advantages of the proposed method over exist-
ing HS and MS fusion methods. In the experience, first, we gener-
ated both low-spatial HS and MS images using a true high HS image
based on (1) and (2), where nh and nm are additive white Gaussian
noises with standard deviation σh and σm, respectively. At this time,
we adopted 15 HS images from the SpecTIR [21], MultiSpec [22],

GIC [23], a Moffett field dataset and Chikusei [24] as the true HS
image, which are normalized its dynamic range into [0, 1]. In ad-
dition, the downsampling rate of S was set as r = 4, the kernel of
B was a 9 × 9 Gaussian blur matrix, and R was a partial average
matrix, which divides bands of an HS image into eight parts, and
averages it in each group.

Second, we estimated a high-spatial HS image from the pair
by each method. In this experiments, we utilize MTF-GLP [5],
CNMF [6], HySure [12] and MAPSMM [10] as copared methods.
Here, with respect to MTF-GLP and MAPSMM, all parameters were
set to the recommended values in a MATLAB toolbox of HS and MS
fusion [3]. In the case of HySure, we decided that its parameter re-
garding data fidelity λϕ = 0.5(σh+σm), and for CNMF, the param-
eter was set to θh = σh and θm = σm for fair comparison. The other
parameters in HySure and CNMF were set to the values of the same
toolbox. For the proposed method, we decided that the parameters
ε = ∥vh − SBūh∥2, η = ∥vm −Rūh∥2, ωh = 0.02, ωm = 0.1,
and λ = 0.3. Besides, for verification of the availability of HSSTV
regarding an MS image denoising, we experimented by the method
replacing HSSTV of the third term in Prob. (3) with hyperspec-
tral total variation (HTV) [25], i.e., HSSTV(um, ωm) is replaced
∥Dum∥1,2. The settings of max iteration number and the stopping
criterion of Alg. 1 were 5000 and ∥u(n)

h − u
(n+1)
h ∥2/∥u(n)

h ∥2 <
1.0× 10−4, respectively.

Finally, we evaluated the estimated high HS images based on
four standard quality measures: PSNR[dB], the Spectral Angle
Mapper (SAM) [26], Erreur Relative Globale Adimensionnelle de
synthèse (ERGAS) [27] and Q2n [28]. Here, to define SAM, and
ERGAS, we assume that spectral and spatial vectors of uh are
ui
h = [ui

h, u
i+N
h , . . . , u

i+(Bh−1)N
h ] ∈ RB (i = 1, . . . , N) and

uj
h

∗
= [u

N(j−1)+1
h , u

N(j−1)+2
h , . . . , u

N(j−1)+N
h ] ∈ RN (j =

1, . . . , Bh), respectively. The spectral and spatial vectors of ūh are
assumed alike. Then, PSNR, SAM and ERGAS are defined by

PSNR(uh, ūh) = 10 log10
NBh

∥uh − ūh∥2

SAM(uh, ūh) =
1

N

N∑
i=1

arccos

(
u⊤
i ūi

∥ui∥2∥ūi∥2

)

ERGAS(uh, ūh) =
100

r

√√√√ 1

B

B∑
j=1

∥u∗
j − ū∗

j∥22
( 1
p
1⊤u∗

j )
2′

,

where 1 = [1, . . . , 1] ∈ RN . Note that the higher value of PSNR
and Q2n are, the more similar uh and ūh, and the lower value of
SAM and ERGAS are, the more similar both images.

Table 1 shows PSNR[dB], SAM, ERGAS and Q2n of the
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True HS image Observed HS image Observed MS image

MTF-GLP CNMF HySure MAPSMM
(19.74, 12.63, 10.32, 0.3373) (22.97, 9.713, 8.825, 0.4808) (24.65, 8.670, 22.40, 0.4339) (21.64, 10.26, 29.24, 0.2890)

Proposed (HTV, p = 1) Proposed (HTV, p = 2) Proposed (HSSTV, p = 1) Proposed (HSSTV, p = 2)
(25.34, 7.520, 8.349, 0.9072) (25.36,7.500,8.340,0.9100) (24.55, 8.369, 9.480, 0.9020) (24.61, 8.316, 9.462, 0.9058)

Fig. 1. Resulting HS images with four quality measure (PSNR, SAM, ERGAS, Q2n) (DC, σm = 0.04).

estimated HS images by the existing and proposed methods for
(σh, σm) = (0.1, 0.04) and (0.1, 0.06). At the time, its values
are the average of the results for all HS images. In Table 1, one can
see that for all the quality measures and for both noise intensity, the
proposed method outperforms all the existing methods. By com-
parison between the proposed by HTV and HSSTV, in the almost
PSNR, SAM and ERGAS cases, HTV is higher quality than HSSTV.
We think that since an MS image has weaker spectral correlation
than an HS image, it hardly necessary to evaluate the spatio-spectral
piecewise smoothness of an MS image. The other hands, in Q2n,
the result of HSSTV and p = 2 is best. Since Q2n evaluates the
structure information and spectral/spatial distortion, the result of
HSSTV have more correct detail than that of HTV.

Fig. 1 is the estimated high HS images in the case of (σh, σm) =
(0.1, 0.04) and DC. They are depicted as RGB images, where R, G,
and B bands were set to the 30th, 60th and 90th bands of them in the
case of the HS images, and these three bands are set as (R, G, B) =
(2, 4, 6) bands in the MS image. One can see that the results by
existing methods have artifacts and spectral distortion. Specifically,
the results using MTF-GLP, MAPSMM, and CNMF have many arti-
facts, so that the spatial smoothness of them are lost. In the HySure

case, the result almost does not have artifacts. However, since the
color of the result changes compared with the original HS image,
HySure produces the spectral distortion. In contrast, the proposed
methods avoid artifacts and spectral distortion. In addition, HSSTV
preserves more edge than HTV.

4. CONCLUSION

We have proposed a new method regarding HS and MS data fusion
effectively using a-priori knowledge on an HS image. The proposed
method simultaneously generate a high-spatial HS image and de-
noise an observed MS image to make robust HS and MS fusion. In
addition, it fully evaluates spatial/spectral piecewise smoothness and
edge similarity between the denoising MS image and the generated
HS image. As a result, the proposed method can generate a high-
spatial HS image without artifacts and spectral distortion. Since the
problem of the proposed method is a nonsmooth convex optimiza-
tion with four hard constraints, a primal-dual splitting method can
solve it after suitable deformation. In the experiments, the results
show the advantages of the proposed method over existing methods.
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