
REFLECTION SYMMETRY DETECTION BY EMBEDDING SYMMETRY IN A GRAPH

Rajendra Nagar and Shanmuganathan Raman

Electrical Engineering, Indian Institute of Technology Gandhinagar, India
{rajendra.nagar, shanmuga}@iitgn.ac.in

ABSTRACT

Reflection symmetry is ubiquitous in nature and plays an im-
portant role in object detection and recognition tasks. Most
of the existing methods for symmetry detection extract and
describe each keypoint using a descriptor and a mirrored de-
scriptor. Two keypoints are said to be mirror symmetric key-
points if the original descriptor of one keypoint and the mir-
rored descriptor of the other keypoint are similar. However,
these methods suffer from the following issue. The back-
ground pixels around the mirror symmetric pixels lying on
the boundary of an object can be different. Therefore, their
descriptors can be different. However, the boundary of a sym-
metric object is a major component of global reflection sym-
metry. We exploit the estimated boundary of the object and
describe a boundary pixel using only the estimated normal of
the boundary segment around the pixel. We embed the sym-
metry axes in a graph as cliques to robustly detect the symme-
try axes. We show that this approach achieves state-of-the-art
results in a standard dataset.

Index Terms— Reflection Symmetry, Graph, Cliques.

1. INTRODUCTION

An object is called reflective symmetric if it remains the same
after reflecting it about its symmetry axis. Symmetry has var-
ious applications in computer vision such as image matching
and recognition [1], face verification [2], and image editing
[3]. We want to find the global reflection symmetry axes
of symmetric objects present in a digital image. This prob-
lem has been attempted previously and promising results have
been obtained through various approaches. The main theme
of many existing methods, e.g., [4, 5, 6], is the following.
Detect the keypoints and describe each keypoint using a de-
scriptor (SIFT [7]) and a mirrored descriptor ([4]). Two key-
points are said to be mirror symmetric keypoints if the orig-
inal descriptor of one keypoint and the mirrored descriptor
of the other keypoint are similar. Then, each pair votes in
the symmetry axis parameter space. The symmetry axis with
maximum votes is the global symmetry axis. However, the
keypoint detection based methods suffer from the following
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issue. The background pixels around the mirror symmetric
pixels lying on the boundary of an object can be different.
Therefore, their descriptors, such as SIFT descriptors, can be
different. Hence, the boundary keypoints can not be used for
symmetry detection. However, the boundary of a symmetric
object is a major component of global reflection symmetry.

We use the fact that reflection symmetry of an object is
mainly defined by its boundary. Finding perfect boundaries
is a hard problem as the boundaries of non-symmetric objects
are also detected. This makes the direct matching of bound-
aries approach to be ineffective. We construct a graph where
each node represents a pair of symmetric pixels and two ver-
tices share an edge if the symmetry axes defined by the corre-
sponding pairs are similar. We observe that a symmetry axis
corresponds to a clique in this graph. We detect all the sym-
metry axes iteratively by detecting the dominant cliques. Our
main contributions in this work are the following.

1. A novel boundary orientation based method for detect-
ing pairs of reflection symmetric pixels.

2. Construction of a graph where each reflection symme-
try axis is embedded as a clique.

3. Detection of the symmetry axes by finding all the dom-
inant cliques. This approach is robust, since by consid-
ering only the dominant cliques, we never consider the
outlier boundaries while finding the symmetry axes.

2. RELATED WORK

The problem of detecting symmetry axis of all the symmet-
ric objects present in an image has been an active research
problem in computer vision and image processing. The recent
challenges organized for symmetry detection in the real world
images are [9, 10, 8]. Various approaches for symmetry de-
tection in digital images are reviewed in [11]. The approaches
for reflection symmetry detection in real-world images can
be categorized as voting based approaches [12, 13, 14, 21,
4, 6, 5, 15, 16, 17] and multiple model fitting approaches in
[18, 19, 20]. The voting based approaches are near invari-
ant to noise. However, due to the voting procedure, they are
time-consuming. Loy and Eklundh described each keypoint
by SIFT and mirrored SIFT descriptors and used the Hough
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transform based line detection algorithm [4]. This method
relies on the detection of keypoionts within the boundaries
of the symmetric object. Atadjanov et al. detected sym-
metry axes using the appearance of structure features. Each
edge point is described by the curvature at the point of inter-
section of the edge passing through the point and the circle
centered at this point [6]. They did not use the edge fea-
tures within the circle. Elawady et al. proposed an efficient
voting based method, where they used the edge characteris-
tics in the Log-Gabor wavelet response space [5]. However,
the Log-Gabor response at mirror symmetric pixels lying on
the boundaries can be different due to different backgrounds.
Therefore, boundary pixels may not participate in the sym-
metry detection process. Bokeloh et al. performed matching
of locally coherent constellations of feature lines to detect the
rigid symmetries [22]. Cornelius et al. used feature descrip-
tors that are robust to local affine distortion to find the sym-
metric feature pairs [23]. Cicconet et al. proposed a registra-
tion based approach for single axis detection [26]. However,
this approach can not detect multiple symmetry axes.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 1: Preprocessing of boundary map. (a) Input image,
(b) UCM, (c) removing junctions to make boundaries valid
curves, (d) the extracted dominant boundary from the clut-
tered boundary map, (e) zoomed UCM, (f) zoomed UCM af-
ter junctions removal, and (g) zoomed dominant boundary.

3. PROPOSED APPROACH

3.1. Detecting Pairs of Reflective Symmetric Pixels

The most important step of the symmetry axis detection is to
find the pairs of pixels which are mirror reflections of each
other. Our main observation is that the global reflection sym-
metry of an object is mainly defined by its boundary. We de-
scribe each boundary pixel using the orientation of the bound-
ary segment passing through the pixel. Therefore, our first
step is to automatically detect the object boundary. We use
the method in [24] to find the boundary map of an image.

Let I be the input image. We represent the boundary map
as ultrametric contour map (UCM). Let E be the boundary
map. We observe that the boundary of the symmetric ob-

ject is connected to the various other outlier boundaries as
depicted in Fig. 1(b), (e). We describe each pixels using the
boundary segment (represented as a curve) passing through it.
Hence, we first preprocess the UCM boundary map such that
the boundaries of the objects can be represented as curves,
i.e., no branchings. We first detect the junction pixels which
are the pixels such that the boundary strength is maximum
in the 3 × 3 neighborhood and the number of pixels in the
3 × 3 neighborhood for which the boundary map has non-
zero value is greater than or equal to 4. Then, to be able to
represent a boundary as a curve, we set the boundary strength
to zero for pixels in the 3 × 3 neighborhood of the junction
pixels which have the boundary score to be non-zero and the
boundary strength is not maximum. In Fig. 1 (c), (f), we show
this step. We observe that we are able to extract the complete
boundary of the object which can be represented as a curve,
i.e., no branching, from the cluttered outlier boundaries. Fur-
ther, let F be the set of all boundary pixels. The boundary
map may not contain the complete boundary of the symmet-
ric object due to occlusions and noise. Therefore, we consider
a fixed length boundary segment around each pixel.

To find the pairs of reflection symmetric pixels, we first
describe each boundary pixel pi ∈ F by using the normals
of the boundary segment passing through the pixels pi. Let
bi : [0, 1] → F be the boundary segment of length z pix-
els (represented as curve) passing through the pixel pi such
that bi(0.5) = pi, where pi is the mid-point of the bound-
ary segment curve bi. If the two pixels pi and pi′ are mirror
reflections of each other, then they define a symmetry axis.
Now, let ni(t) be the normal to the curve bi and ni′(t) be
the normal to the curve bi′ at t. Further, let br

i be the reflec-
tion of the curve bi about the symmetry axis defined by the
pair of pixels pi and pi′ . Then, it is easy to observe that the
angle between the normal nr

i(t) to the curve br
i at t and the

normal ni′(t) to the curve b′i at t should be equal to 0◦ for all
t ∈ [0, 1]. Similarly, let br

i′ be the reflection of the curve bi′
about the symmetry axis defined by the pair of pixels pi and
pj .Then, the angle between the normal nr

i′(t) to the curve br
i

at t and the normal ni(t) to the curve bi at t should be equal
to 0◦ for all t ∈ [0, 1]. Therefore, the pixels pi and pi′ form a
pair of reflection symmetric pixels, if Eq.(1) is satisfied.

∫ 1

0

cos−1
(
(nr

i(t))
>ni′(t)

)
+cos−1

(
(nr

i′(t))
>ni(t)

)
dt = 0.

(1)

For the case of perfect symmetry, Eq.(1) holds true. How-
ever, due to the presence of noise and illumination variations,
this might not hold true in practice. Therefore, we say that the
pixels pi and pj form a pair of reflection symmetric pixels if∫ 1

0
cos−1

(
(nr

i(t))
>ni′(t)

)
+ cos−1

(
(nr

i′(t))
>ni(t)

)
dt < θ.

We chose θ = 5◦ in all our experiments. In Fig.2, we show
a graphical illustration of the curve reflection process and the
measurement of the similarity between the normals.
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Fig. 2: Illustration of pairs of mirror symmetric pixels detection approach. (a) Three curves bi(t), bj(t), and bk(t). (b) Reflection
of the curves bi(t), bj(t) about the symmetry axes Lki and Lji defined by the pairs (bk, bi) and (bk, bj), respectively. (c), (d)
The normals nki, nkj , nk to the curves bki, bkj , and bk, respectively, shown on the curve bk for better comparison.

3.2. Detecting Reflection Symmetry Axes

Our goal is to detect all the symmetry axes using the set of de-
tected pairs of mirror symmetric pixels which possibly con-
tain outlier pairs. First, we cluster the pairs of mirror sym-
metric pixels. Then, we find the symmetry axis in each clus-
ter separately. Let {(pi,pi′)}fi=1 be the detected f pairs of
mirror symmetric pixels. We construct an undirected graph
G = (V, E), where each vertex vi in the vertex set V corre-
sponds to the pair (pi,pi′). We connect the vertices vi and
vj by an unit weight edge if the symmetry axes Li and Lj ,
defined by the pairs (pi,pi′) and (pj ,pj′) respectively, are
similar. We define the similarity between the symmetry axes
as follows. Let br

ji be the reflection of the curve bj through
the symmetry axis Li and nr

ji(t) be its normal at t. Similarly,
let br

ij be the reflection of the curve bi through the symme-
try axis Lj and nr

ij(t) be its normal at t. If the symmetry
axes Li and Lj are similar, then the angle between the nor-
mals nr

ji(t) and nj′(t) should be equal to 0◦ and the angle
between the normals nr

ij(t) and ni′(t) should be equal to 0◦.
Therefore, we create an edge between the vertices vi and vj , if∫ 1

0
cos−1

(
(nr

ji(t))
>nj′(t)

)
+ cos−1

(
(nr

ij(t))
>ni′(t)

)
dt <

θ.
We observe that each clique in the graph G corresponds

to the set of pairs of mirror symmetric pixels belonging to the
same symmetry axis. We further, observe that each outlier
pair does not make an edge with any other pairs. The out-
lier pairs remain isolated vertices in the graph G. Therefore,
our goal is to find the first k dominant cliques of the graph
G in order to find all the k reflection symmetry axes of an
input images. However, finding clique in a graph is an NP-
complete problem, hence we find the approximate solution as
follows. A clique in the graph G is a subset C of the vertex
set V such that every pair of vertices in C are connected by
an edge. It is a well known result that a clique is equivalent
to an independent set in the complement graph of the graph
G [25]. The complement graph Ḡ = (V̄, Ē) of the graph G is
the graph such that V̄ = V , (u, v) ∈ E ⇒ (u, v) /∈ Ē , and
(u, v) /∈ E ⇒ (u, v) ∈ Ē . An independent set in the graph Ḡ
is a subset I of the vertex set V̄ such that no two vertices in I
are adjacent. Furthermore, the independent set is the comple-
ment of the vertex cover [25]. A vertex cover of an undirected

graph Ḡ is a subset Vc of vertices of V̄ such that if (vi, vj) is
an edge in Ḡ, then either vi ∈ V̄ or vj ∈ V̄ or both vi, vj ∈ V̄ .
We solve the following integer linear program (ILP) to find
the minimum vertex cover.

min
∑

v∈V̄ xv

s.t. xu + xv ≥ 1 ∀(u, v) ∈ Ē
xv ∈ {0, 1} ∀v ∈ V̄ (2)

Here, the binary variable xv is equal to 1, if the vertex v is
in the vertex cover Vc and is equal to 0, otherwise. The con-
straint xu + xv ≥ 1 ensures that at least one vertex of the
edge (u, v) ∈ Ē is included in the vertex cover. We rewrite
the above ILP in the standard form as shown in Eq. (3).

min
x

1>x subject to Ex ≥ 1, x ∈ {0, 1}|V̄|. (3)

Here, 1 is a vector of size |V̄| with all elements equal to 1.
The matrix E ∈ {0, 1}|Ē|×|V̄| is the edge incident matrix such
that E(e, v) = 1, if the e-th edge is incident on the vertex
v and E(e, v) = 0, if the e-th edge is not incident on the
vertex v. The vertex cover problem is an NP-hard problem.
Therefore, we use the best known approximation which is a
2-approximation obtained by relaxing the integer linear pro-
gram in Eq. 3 to a linear program. In the relaxed program,
each variable takes value in [0, 1], i.e., x ∈ [0, 1]|V̄|. We ob-
tain the final solution by an optimal thresholding approach. If
xi ≥ 0.5, then xi = 1. Otherwise, xi = 0. Let Vc be the
vertex cover found. Then, the independent set I = V̄\Vc and
the clique C = I. We remove all the vertices of the clique C
from the graph G and all the edges incident on them. Then,
we find the next dominant clique in the remaining graph. We
find the first k dominant cliques by following the above pro-
cedure. We present the complete procedure in Algorithm 1.

We use the detected pairs of reflective pixels to detect the
symmetry axes. We represent the detected pairs of mirror
symmetric pixels as the collection of sets {Pi}ki=1 such that
each set Pi contains pairs of mirror symmetric pixels which
are symmetric about the same axis. Each pair (pj ,pj′) ∈
Pi defines its own symmetry axis which is the line passing
through the point pj+pj′

2 and is perpendicular to the vector
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Algorithm 1 Reflection Symmetry Detection
Input: Image I , Number of symmetry axes k.

1: Find the boundary map from image I and preprocess it
such that each boundary can be represented as a curve.

2: Find the pairs of reflective symmetric pixels.
3: Construct the graph G.
4: for i ∈ {1, 2, . . . , k} do
5: Construct complement graph Ḡ of graph G.
6: Find minimum vertex cover Vc of Ḡ by using Eq. (3).
7: I = V̄\Vc.
8: Pi = {(pj ,pj′) : j ∈ I}.
9: Remove vertices I from the graph G and edges inci-

dent on them.
10: end for
11: k sets of pairs of mirror symmetric pixels {Pi}ki=1.
12: Find the symmetry axis for each set separately.
Output: Detected reflection symmetry axes.

pj − pj′ . Since all the pairs in the set Pi belongs to the same
symmetry axis, the symmetry axes defined by all these pairs
should be similar. Hence, the best symmetry axis which is
close to all the candidate symmetry axes, is the average line
passing through the point

∑
(pj ,pj′ )∈Pi

pj+pj′

2|Pi| and is perpen-
dicular to the vector

∑
(pj ,pj′ )∈Pi

(pj − pj′).

4. RESULTS AND EVALUATION

We have used the standard benchmark dataset in [8] to test and
evaluate our method. In Fig. 3, we present a few examples
of the detected symmetry axes on images from the dataset in
[8] by the proposed approach. Two mirror symmetric bound-
ary segments are shown in green color and connected by blue
lines. The detected symmetry axes are shown in red color.
We observe that the symmetry detected in all these examples
is due to the pairs of reflective symmetric boundary pixels.

Fig. 3: Results on the dataset in [8]. First row: Single sym-
metry axis. Second row: Multiple symmetry axes.

We compare our method with the state-of-the-art methods
[5], [26], [4], and [18] for single symmetry axis detection and
with the methods [5], [4], and [18] for the multiple symme-
try axes detection on the dataset in [8]. The method by [26]
can only detect a single symmetry axis. Therefore, we do not
compare with [26] for the multiple symmetry case. We use

the metrics F-score and precision vs recall curves used in [8]
to compute the precision and recall values. The F-score is de-
fined as F = 2tp

2tp+fp+fn , where, tp = number of correctly
detected axes, fp = number of incorrectly detected axes, and
fn = number of undetected ground-truth axes. Let `g be
the ground truth symmetry axis. Similarly, let `e be the es-
timated symmetry axis. Then, the detected symmetry axis
`e is correct if the angle between the lines `g and `e is less
than θt, and the distance between the center points of the line
segments `g and `e is less than the threshold dt. We choose
dt = 0.025 ×min(w, h), θt = 3◦, and z = 32 pixels. Here,
w and h are the width and height of the input image, respec-
tively. For the case of multiple symmetry axes, we count only
one correct detection if there are multiple correct detections
for a single ground truth symmetry axis. In Fig. 4, we show
the recall vs precision curves and the maximum F -score, rep-
resented as a big point on each curve, for all the methods. We
observe that the proposed approach achieves the state-of-the-
art performance on the dataset in [8] for multiple symmetry
axes and the second-best performance for single symmetry
axis.
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Fig. 4: Recall vs Precision curves for Elawady et al. [5],
Cicconet et al. [26], Loy and Eklundh [4], Nagar and Raman
[18], and the proposed approach on the dataset [8]. We report
the maximum F-score values in the legends.

5. CONCLUSION AND FUTURE WORK

In this work, we have presented an efficient method for the
detection of reflection symmetry axes for all the symmetric
objects present in the given image. We have used the fact that
the boundary of a symmetric object significantly determines
the global reflection symmetry of a symmetric object. We
have embedded the reflection symmetry in the graph, where
each clique in the graph corresponds to a particular symme-
try axis. We have achieved state-of-the-art performance on
the standard benchmark dataset for multiple symmetry axes
and second-best performance for single symmetry axis detec-
tion. Our method has a clear advantage over the keypoint
based methods. Our method completely relies on the bound-
ary detection. In future, we would like to improve the detected
boundaries and the reflection symmetry detection by coupling
both boundary and symmetry detection together.
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