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ABSTRACT

Direction information has been intensively investigated for
Finger-Knuckle-Print (FKP) recognition. However, most ex-
isting direction-based KFP recognition methods are hand-
crafted, which are heuristic and require too much prior
knowledge to engineer them. In this paper, we propose a
discriminative direction binary feature learning (DDBFL)
method for FKP recognition. We first propose a direction
convolution difference vector (DCDV) to better describe the
direction information of FKP images. Then, we learn a fea-
ture projection to convert the DCDV into binary codes, which
are compact for the intra-class samples and more separa-
ble for the inter-class samples. Finally, we concatenate the
block-wise histograms of the DDBFL codes to form the final
descriptor for FKP recognition. Experimental results on the
baseline PolyU FKP database demonstrate the competitive
performance of the proposed method.

Index Terms— Biometrics, FKP recognition, Direction
feature learning, Discriminative FKP descriptor

1. INTRODUCTION

Biometrics refers to automatically recognizing an individu-
al by using one’s distinctive anatomical and behavioral trait-
s [1][2], which has become an important solution for our se-
curity applications [3]. In the modern society, various bio-
metrics modalities such as face, iris, fingerprint and palm-
print have been developed [4][5]. As a relatively new biomet-
ric trait, Finger-Knuckle-Print (FKP) contains rich line and
texture features, which are deemed to be unique to a sub-
ject [6][7][8] and not easy to be abraded. Due to its high
reliability, stability and user acceptability, FKP recognition
has been attracting increasing research attention in the past
decade [9][10][11].

In recent years, many FKP recognition methods have been
proposed [12][13][14][15], which can be roughly classified
into two categories: holistic feature-based and local feature-
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based methods. The holistic-based feature extraction meth-
ods use the whole FKP images for recognition and the typical
methods include PCA and LDA [11]. For example, Kumar
et al. [11] extracted and fused the FKP features by using the
PCA and LDA principles. By contrast, more efforts of re-
searchers focused on the local feature extraction of FKP im-
ages due to its rich line and texture information. For example,
Kumar et al. [12] proposed a KnuckleCode method by us-
ing localized Radon transform to characterize random lines
and creases of FKP images. Zhang et al. [13] used the Ga-
bor filter-based competitive code to represent the dominant
direction features of FKP images. Gao et al. [14] proposed
a multiple orientations and multiple levels FKP recognition
method by encoding the Gabor filtering responses on multiple
orientations. More direction-based FKP recognition method-
s can be found in [16][17][18][19][20]. It can be seen that
the direction-based information serves as one of the most im-
portant features for FKP recognition providing encouraging
recognition performance. However, most existing direction-
based FKP recognition methods are hand-crafted and their
performance heavily depends on the prior knowledge.

In this paper, we propose a direction feature learning
method for FKP recognition. Fig. 1 shows the basic idea of
the proposed method. The main contributions of the pro-
posed method can be summarized as follows. (1) We propose
a direction convolution difference vector to better describe
the direction information of a FKP image for discriminative
direction feature learning; (2) We propose a feature learn-
ing method to jointly learn and encode the discriminative
direction features for FKP recognition; (3) We conduct com-
parative experiments on the baseline PolyU FKP database and
the experimental results show that our method outperforms
state-of-the-art methods.

Fig. 1. The basic idea of the proposed DDBFL method.
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2. LEARNING DISCRIMINATIVE FKP
DESCRIPTOR

In this section, we first briefly review the direction features of
FKP images. Then, we show the extraction of the direction
convolution difference vector. Lastly, we present the discrim-
inative direction binary feature learning (DDBFL) method.

2.1. Direction Features of FKP Images

A FKP image contains rich line features such as wrinkles and
creases, which carry rich direction features. For this reason,
most existing methods extract the direction features for FKP
recognition. They usually use a bank of direction-based tem-
plates such as Gabor filters to convolve with a FKP image.
The dominant direction-based methods such as the competi-
tive code [21] and KunckleCode methods encoded the direc-
tion of the template which produces the maximum filtering
response as the direction features. However, these kinds of
methods that extracted the single dominant direction features
may loss the information on other directions such as multi-
ple dominant directions of FKP images. Due to this, some
methods such as MoriCode [14] and BOCV [22] encoded
the filtering responses between the templates and a FKP im-
age on multiple directions. It can be seen that most existing
direction-based methods are hand crafted, which require too
much prior knowledge to design them. In this work, we pro-
pose a direction feature learning method for FKP recognition.

2.2. Direction Convolution Difference Vector

Unlike most direction-based methods which use direction-
specific convolution results, we introduce a new and infor-
mative direction convolution difference vector for discrim-
inative FKP direction feature learning and extraction. We
first define twelve Gabor filters [5][21] with the directions of
(j − 1)π/12(j = 1, 2, ..., 12) and then convolve them with a
FKP image as follows:

cj(x, y) = Gj ∗ I(x, y), (1)

where Gj represents the Gabor filter with direction of (j −
1)π/12. I is a FKP image and “*” is the convolution op-
eration. cj is the convolution result, which is referred to as
direction convolution. After that, we calculate the direction
convolution difference between each pair of the neighboring
directions to form the DCDV, as follows:

DCDV = [c12−c11, ..., cj−cj−1, ..., c2−c1, c1−c12]. (2)

Fig. 2 shows an example of how to calculate the DCDV of
a pixel in a FKP image. DCDV measures the convolution dif-
ference between two neighboring directions so that it can bet-
ter describe how the direction convolution change and implic-
itly denote the significance of a direction feature. Moreover,

Fig. 2. An illustration of how to obtain a DCDV.

a DCDV can clearly denote the multiple dominant direction
features of a point in a FKP image. For example, a positive
direction convolution followed a negative direction convolu-
tion usually denotes a dominant direction in a local patch of
a FKP image. Therefore, DCDVs contain informative direc-
tion information of a FKP image. In addition, a DCDV has
a zero mean, which is suitable for feature learning without
performing zero-normalization.

2.3. DDBFL

DCDVs contain informative direction information of a FKP
image. We aim to learn the most discriminative features from
the DCDVs. Motivated by the fact that binary features are
effective and robust to local changes such as illumination
variations, our DDBFL method aims to learn K hash func-
tions to map a DCDV into a binary feature vector. Suppose
xp,i∈Rd×1 is the DCDV of the pth pixel of the ith FKP im-
age, the kth binary code bp,i,k of xp,i is computed as follows:

bp,i,k =
1

2
×(sgn(wT

k xp,i) + 1), (3)

where sgn(u) equals to 1 when u > 0 and -1 otherwise.
wk(k = 1, 2, ...,K) is the kth projection function.

To make the learned feature discriminative, for the train-
ing samples, we maximize the variance of all the learned bina-
ry codes so that the learned feature codes are separable. More-
over, the inter-class distance of them is maximized and the
intra-class distance is minimized, making the feature codes
compact for the same class and more separable for differen-
t classes of the FKP images. To this end, we formulate the
following optimization objective function:

max
wk

J(wk) = max
wk

J1(wk) + 2λJ2(wk)

= max
wk

P∑
p=1

N∑
i=1

||bp,i,k − µ̄p,k||2 + 2λ
P∑

p=1

N∑
i=1

(
∑

j /∈Υ(i)

||bp,i,k

−bp,j,k||2 −
∑

j∈Υ(i)

||bp,i,k − bp,j,k||2),

(4)
where µ̄p,k is the mean of the kth binary codes extracted from
the DCDVs of the pth pixels of all samples. N is the number
of the training FKP images and P is the pixel number of a
FKP image. Υ(i) is the index set of the samples that are from
the same class as the ith sample. It is seen that the objective
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function has two terms, which are trade off by a balance pa-
rameter, i.e., λ. The first term is to ensure that the variance
of the learned binary codes of all samples is maximized in an
unsupervised manner. The objective of the second term is to
maximize the inter-class difference and the intra-class simi-
larity of the feature codes in a supervised manner.

To our knowledge, Eq. (4) is NP-hard due to the non-
linear sgn function. According to [23][24], we relax the sign
function to its signed magnitude. Hence, the first term of Eq.
(4) can be rewritten as:

J1(W ) =
P∑

p=1

||WTXp −WTMp||2

= tr(WT (
P∑

p=1

(XpX
T
p − 2XpM

T
p +MpM

T
p ))W ),

(5)

where Xp∈Rd×N = [xp,1, xp,2, ..., xp,N ] is the DCDV ma-
trix extracted from the pth pixels of all the training sam-
ples. Mp∈Rd×N = [mp,mp, ...,mp] is the pth DCDV
mean matrix, where mp∈Rd×1 is the mean vector of the
pth DCDVs extracted from the pth pixels of the samples.
W = [w1, w2, ..., wK ]∈Rd×K is the projection matrix. d is
the size of a DCDV, i.e., 12.

For the second term, we replace the l2 − norm distance
metric with the sign multiplication and rewrite it as follows:

J2(wk) =
P∑

p=1

N∑
i=1

(
∑

j∈Υ(i)

sgn(wT
k xp,i)×sgn(wT

k xp,j)

−
∑

j /∈Υ(i)

sgn(wT
k xp,i)×sgn(wT

k xp,j)).

(6)

We relax the sgn function to its magnitude and the second
term of Eq. (4) can be rewritten as follows:

J2(W ) =
1

2

P∑
p=1

tr(WTXpSX
T
p W )

=
1

2
tr(WT (

P∑
p=1

XpSX
T
p )W ),

(7)

where S∈RN×N is defined as follows:

Si,j =

{
1, if i∈Υ(j),
−1, else.

(8)

By combining Eq. (5) and Eq. (7), we rewrite the objective
function J(W ) as follows:

J(W ) = J1(W ) + 2λJ2(W )

= tr(WT (
P∑

p=1

(XpX
T
p − 2XpM

T
p +MpM

T
p ))W

+λWT (
P∑

p=1

XpSX
T
p )W ) = tr(WTQW ),

(9)

where Q =
∑P

p=1(XpX
T
p −2XpM

T
p +MpM

T
p +λXpSX

T
p ).

Therefore, our optimization function becomes a typical eigen-
problem, and W can be solved by calculating the eigenvectors
corresponding to the top-K eigenvalues of Q [23].

2.4. DDBFL-based Descriptor for FKP Recognition

To better represent the position-specific direction features of
FKP images, we use the block-wise statistics of the DDBFL
codes as the final features. Specifically, having learned the
projection matrix W , we map the DCDVs of a FKP image in-
to DDBFL binary codes. Then, we divide the feature map into
non-overlapped local blocks, such as 16×16 pixels, and cal-
culate the histograms of the DDBFL codes within each block.
Lastly, we concatenate the block-wise histograms to form the
final FKP feature descriptor. After that, we can use the simple
and efficient chi-square distance to calculate the similarity of
two DDBFL-based descriptors for FKP recognition.

3. EXPERIMENTS

In this section, we conduct experiments on the widely used
PolyU FKP database [13] to evaluate the proposed method.

3.1. Database

The PolyU FKP database contains 7,920 FKP images collect-
ed from 165 volunteers. A subject was asked to provide 12
images in two sessions for the index and middle figures of
each hand. Therefore, the PolyU FKP database consists of
7,920 samples from 660 different fingers. In our experiment,
we used the enhancement method [13] to extract the ROIs of
these FKP images and resized them into 55×110 pixels.

3.2. FKP Recognition

In this subsection, we first conducted FKP identification and
then FKP verification experiments. FKP identification is a
one-against-many comparison procedure to identify a query
FKP image. In this study, we selected the first n(n=2,...,6) im-
ages for each finger as the training samples and used the rest
as the query samples. The average rank-one identification ac-
curacy on different training sets was calculated to evaluate the
identification performance of the proposed method. For better
comparison, the conventional representative FKP recognition
methods such as MoriCode [14], ImCompCode [13] and
ImCompCode&MagCode [13], and the popular direction-
based palmprint recognition methods such as the competitive
code [21] and BOCV [22] were also implemented. For the
proposed DDBFL method, we empirically set λ to 0.01 and
the number of DDBFL codes for a pixel to 6. Table 1 tabulates
the identification results of different methods.

Furthermore, we divided the PolyU FKP database into the
index FKP dataset and middle FKP dataset and each dataset
contains 3,960 FKP images from 330 different fingers. We
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conducted identification experiments on both the index and
middle FKP datasets, as reported in Table I. From the table,
we can see that the proposed method achieves obviously bet-
ter performance with the smallest gain of approximately 4%
in accuracy than the state-of-the-art methods on each dataset.

Table 1. The identification accuracies (average accuracies ±
standard deviations) obtained by different methods.

PolyU FKP Index FKP Middle FKP
ComptetiveCode 78.26±1.83 79.35±1.85 80.00±1.43
BOCV 82.28±1.09 83.21±0.93 83.20±0.96
MoriCode 74.79±2.27 75.10±2.24 77.23±2.07
ImCompCode 84.05±1.37 85.16±1.13 85.59±1.41
ImCompCode&MagCode 87.43±1.33 88.29±1.08 88.75±1.27
DDBFL 92.21±0.85 93.19±1.30 92.74±0.59

FKP verification is a one-by-one matching procedure to
verify whether two FKP images are from the same finger. In
this experiment, we matched each FKP image with all the oth-
er samples of the PolyU FKP database and calculated the false
rejection rate (FRR) and false acceptance rate (FAR) [13][21].
Then, we drew the Receiver Operating Characteristic (ROC)
curve, which is a curve of FRR versus FAR against all possi-
ble operating points, to estimate the performance of FKP veri-
fication. Fig. 3 shows the ROC curves of the proposed method
in comparison with several representative FKP recognition
methods. It can be seen that the proposed method always ob-
tains a lower FRR than the five compared methods under each
FAR setting. Compared with the existing hand-crafted meth-
ods, our DDBFL method and DCDV are elaborately designed
for discriminative FKP direction feature learning. More dis-
criminative and data-adaptive direction features of FKP im-
ages can be exploited so that a better recognition rate can be
obtained.

Fig. 3. The ROC curves of different methods.

3.3. Parameter Analysis

The proposed DDBFL contains a balance parameter, i.e. λ.
Fig. 4(a) shows the identification rate of the DDBFL with dif-
ferent values of λ on the PolyU FKP (Po), lndex FKP (In) and
middle FKP (Mi) datasets. It is seen that the proposed method
achieves the best when λ is set to 0.001 and 0.01. In this pa-
per, we empirically set λ to 0.01 for the DDBFL method.

The proposed DDBFL method learns the discriminative
direction binary codes from the DCDVs. The size of a DCDV

is 12 and thus one to at most twelve DDBFL binary codes can
be learned for a DCDV. Fig. 4(b) depicts the average iden-
tification accuracies of the proposed method versus different
numbers of DDBFL codes based on the different training sets.
It can be seen that the accuracy increases rapidly as the num-
ber of DDBFL codes increases from 1 to 6 and then increases
slowly from 6 to 12. It demonstrates that learning more D-
DBFL codes for a DCDV can achieve a higher identification
rate. In addition, the DDBFL method can achieve a very close
accuracy to the best one when the number of DDBFL codes
is 6. To balance the feature size and the recognition perfor-
mance, our method extracts 6 DDBFL codes for a DCDV.

(a) (b)

Fig. 4. (a) The accuracies of the proposed method with dif-
ferent values of λ; (b) The accuracies of the proposed method
versus different numbers of the DDBFL codes.

3.4. Computational Time Analysis

Different from most existing methods that directly extract di-
rection features, the proposed method needs to first learn a
feature mapping and then extract the direction features. It is
seen that the DDBFL optimization function has a close-form
solution so that it has a high computational efficiency. In ad-
dition, after learning a feature mapping, the proposed method
can simply yet efficiently convert a DCDV into feature codes.
For example, the average time of feature extraction for a FKP
image is about 0.03 s under a PC with a double-core Intel(R)
i7-7700 (3.60GHz) CPU and 16 GB RAM, which is fast for
real-world applications.

4. CONCLUSION

In this paper, we first propose a direction convolution dif-
ference vector to better describe the direction information of
FKP images. Then, we propose a feature learning method to
jointly learn and encode the discriminative direction features
for FKP recognition. Experimental results on the benchmark
FKP database show that the proposed method outperforms the
state-of-the-art FKP recognition methods, which also validate
the effectiveness of the hash learning-based methods on FKP
recognition. For future work, it would be interesting to apply
the DDBFL method to other biometrics tasks such as finger-
vein and palmprint recognition to further demonstrate its ef-
fectiveness.
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