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ABSTRACT

Most covariance-based representations of actions are focused
on the statistical features of poses by empirical averaging
weighting. Note that these poses have a variety of salien-
cy levels for different actions. Neglecting pose saliency
could degrade the discriminative power of the covariance
features, and further reduce the performance of action recog-
nition. In this paper, we propose a novel saliency weighting
covariance feature representation, Saliency-Pose-Attention
Covariance(SPA-Cov), which reduces the negative effects
from the ambiguous pose samples. Specifically, we utilize a
discriminative approach to derive probability distribution of
action categories for each pose, which is modeled by the un-
certainty of information entropy to obtain the salient weight-
ing. Experimental results show that our proposed method
efficiently improves the discriminative power of the gener-
ated covariance. In some databases, the proposed SPA-Cov
outperforms the state-of-the-art variant methods which are
based on kernel matrix, Bayesian posterior features, temporal
hierarchical features, etc.

Index Terms— Covariance, Pose, Attention, Saliency

1. INTRODUCTION

In recent decades, covariance matrix becomes very popular
and is widely used in many computer vision tasks, such as
speech processing[1], objective tracking[2], etc. This is due
to the fact that it has two major advantages. Firstly, it provides
more rich second-order statistical information than vanilla ob-
servations for various recognition tasks. Secondly, it is a
Symmetric Positive Definite(SPD) matrix and lies in a Rie-
mannian manifold, which has a well-developed theoretical
property in mathematics.

For action time-series, covariance is used to model lin-
ear correlations between variables over temporal evolution[3].
Generally, empirical covariance is always used for feature
representations. This means the poses in a sequence are e-
qually weighted to generate covariance matrix. However, no-
tice that the action poses have various saliency levels for d-
ifferent action categories[4]. For example, several actions
could commonly include the standing pose, which satisfies
the definition of ambiguous poses and is not very useful for

some specific recognition tasks. Therefore, empirical covari-
ance will degrade the performance of recognition tasks. This
observation motivates us to pay more attention to some salien-
t and discriminative poses, while neglecting some ambiguous
poses[5]. In principle, enhancing discriminative information
from salient poses and reducing useless, or even negative, in-
formation from ambiguous poses will make the generated co-
variances closer in a manifold space when they belong to the
same action category, and farther when they belong to the d-
ifferent action categories.

In this paper, we propose a novel saliency weighting
covariance feature representation, Saliency-Pose-Attention
Covariance(SPA-Cov). Accordingly, a discriminative ap-
proach is proposed to utilize the uncertainty of information
entropy to model the salient weighting of poses, which re-
duces the negative effects from the ambiguous pose samples
and thus generates the discriminative rather than empirical co-
variance features. Our proposed SPA-Cov greatly improves
the performance of the linear covariance matrix compared
to empirical covariance. This is due to the fact that a dis-
criminative guide knowledge of poses has been added into
the generation process, unlike the other methods that just
use self-information to generate feature representations. In
the case of singularity, e.g. the number of statistical sam-
ples is less than feature dimensionality, we take a parametric
conjugate prior of covariance to make it posterior, rather
than simply appended a small scaled identity matrix[3]. Our
method also can be extended to combine with the other meth-
ods. Just like the prior example above, making it more robust
for feature representation.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the related work. The detail of the SPA-Cov
matrix is given in section 3. Experimental results are present-
ed in section 4. Lastly, section 5 concludes the work in this
paper.

2. RELATED WORK

In this paper, we propose an adapted covariance feature rep-
resentation by discriminative saliency weighting of poses.
Therefore, we will focus on two kinds of literature for action
recognition, pose-aware and covariance-aware methods.
Pose-aware Methods. The effect of pose is crucially im-
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portant for action recognition. The local features of pos-
es can incur more widely applicable scenarios, e.g on-
line recognition[4]. At first, action recognition engages in
the recognition of still poses, recognizing actions by pose
categories[6]. Subsequently, some methods of feature repre-
sentation are proposed to improve the discriminative power
of poses, e.g. space-time feature[7]. In [4], the authors
conclude that the categories of the poses in actions have ob-
vious discriminative saliency. This is because we just intend
to pay more attention to the most useful poses in actions
for classification[5]. To boost the power of saliency poses,
some mining techniques of key poses are propose in [8].
In deep leaning domain, attention-based neural networks
are proposed for action recognition[5]. Attention mecha-
nism enables the learned network to automatically highlight
the desired saliency information and learn a robust coding
representation. For examples, [9] learns a similarity met-
ric between sequences, which can align the concerned local
information both temporally and spatially.
Covariance-aware Methods. Covariance matrix is first used
as a region descriptor of image for classification[10]. Due to
rich and robust statistic property, covariance is introduced to
represent action time-series[3]. To improve the performance
of covariance, some adapted methods are proposed for ac-
tion recognition. For examples, in [11], the authors propose
to map the covariances into the vectors in Euclidean space
and conduct discriminative learning. [12] applies sparse
coding and dictionary learning over SPD matrices, which
further improve the expressive robustness. [13] suggests a
third-order super-symmetric tensor representation instead of
covariance. [14] proposes a tensor representation via ker-
nel linearization, which will compactly capture higher-order
relationships between body joints. In addition to the tem-
poral correlation statistics, [15] imposes time-order into the
covariance-based feature representations. To solve singu-
larity and linear expressive power, [3] proposes non-linear
kernel matrix to replace linear covariance, and [16][17] ap-
plies kernelized covariance, which maps pose samples into
a infinite-dimensionality Hilbert space. [18] proposes the
SPD dimension reduction on manifold to derive robust low-
dimensional SPD matrices. In [19], the authors design a
neural network to directly classify SPD matrices. In [20], the
authors use locality projection on Riemannian manifold to
find the most useful part in sequence.

3. PROPOSED METHOD

3.1. Preliminaries

Given an action sequence A ∈ RM×T is denoted by a pose set
DA = {xt}Tt=1, the empirical covariance matrix involves the
second-order linear statistical correlations among M feature
variates:

ΣDA
=

1

T

T∑
t=1

F(xt − µ) (1)

where µ is a mean vector along the temporal axis and F(a) =

a ⊗ a
∆
= a · aT denotes tensor product of vectors which will

span to a symmetric second-order tensor.
From one point of view, the formula (1) is derived from

the MLE of the parameters of Gaussian distribution, where
the pose samples are assumed to follow a continuous Gaus-
sian distribution xt ∼ N (µDA

,ΣDA
). To perform MAP esti-

mation, we have to specify conjugate priors about the param-
eters of this Gaussian distribution:

p(µDA
) = N (µDA

|µ0,Σ0) (2)

p(ΣDA
) = IW(ΣDA

|S−1
0 , γ0) (3)

∝ |Σ0|−
(M+γ0+1)

2 exp
{
− 1

2
Tr(S0)Σ

−1
0

}
(4)

where IW(·) is a Inverse Wishart(IW) distribution, S−1
0 is a

prior scatter matrix and γ0 > M − 1 is the degrees of free-
dom. We can obtain posterior by Bayesian formula, which
also follows a IW distribution:

p(ΣDA
|DA, µA) ∝ Prior× Likelihood (5)

= IW(ΣDA
|S−1

T , γT ) (6)
S−1
T = S0 + SµDA

(7)
γT = γ0 + T (8)

The posterior covariance can be obtained by the derivative
of the log posterior function ∂logp(ΣDA

|DA, µDA
)/∂ΣDA

:

Σ̂DA
=

S−1
T

M + γT + 1
= πΣ0 + (1− π)ΣDA

(9)

where Σ̂DA
is a convex combination of prior and likelihood,

and π ∈ [0, 1] controls the intensity of the prior knowledge.
Note that the components of the posterior covariance, σ̂ij

DA
=

πσij
0 + 1−π

T ⟨z̄i, z̄j⟩, still retain linear relationship, where z̄i =
zi − 1

T zi · 1T×T is the i-th row of the matrix A which is
subtracted by its mean value.

3.2. Saliency-Pose-Attention Covariance Matrix

In order to derive a quantity describing saliency levels for
pose samples in terms of action categories, we propose a non-
parametric saliency weighting method. Ψxn is a set including
K most similar pose samples in terms of the pose xn, which
is obtained by K-NN algorithm:
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Ψxn = KNN(xn,D
train
−xn

) = {(xk, yk)}Kk=1 (10)

where Dtrain
−xn

is all the poses from the training set except the
pose sample xn, yk is the action category identity, K is the
number of the nearest neighbors. Therefore, we can count the
probabilities Zxn

for the pose xn in terms of action categories
as follows:

Zc
xn

=
1

K

K∑
k=1

I(yk = c), c = 1, . . . , C (11)

where I(·) is an index function and the action category identi-
ty of each pose yn follows a category distribution(multinoulli
distribution) yn ∼ Cat(Zxn). Fortunately, the uncertainty
of this distribution is able to reflect the saliency levels of the
separate action categories for this pose xn. The intuitive way
to measure the uncertainty is to use information entropy to-
wards a distribution. The maximal uncertainty corresponds to
an uniform distribution, which means that this pose has the i-
dentical probability mass for allocating to the different action
categories, thereby it conforms to a definition of the ambigu-
ous pose. We thus want to suppress these ambiguous poses
while augmenting the salient poses. For intuition, the entropy
of the category distribution could be subsequently normalized
as a saliency level due to boundaries of H(xn) ∈ [0,−logC]:

H(xn) = −
C∑

c=1

Zc
xn
logZc

xn
(12)

S(xn) =
Hmax −H(xn)

Hmax
∈ [0, 1] (13)

For the SPA covariance, the empirical average weighting
is replaced by a normalized probability integral over an action
sequence DA:

p(xt|DA) =
S(xt)∑T
t=1 S(xt)

(14)

Therefore, we are able to derive the SPA covariance ΣS
DA

by the statistical expectation of these second-order tensors:

ΣS
DA

=

∫
xt

p(xt|DA)F(xt − µS)dxt (15)

where µS =
∫
xt

p(xt|DA) · xtdxt is the saliency weighted
mean function.

In addition, we can also impose the regularized prior Σ0

to against the case of singularity. In this paper, we take use
of a very popular shrinkage estimate for MAP, where prior
scatter matrix S0 is set to diag(ΣS

DA
). The components of

the posterior SPA covariance are given by:

σ̂S,ij
DA

= I(i = j) · σS,ij
DA

+ I(i ̸= j) · (1− π)σS,ij
DA

(16)

where parametric π identically controls the prior intensity.

4. EXPERIMENTS

In this section, we evaluate the proposed SPA covariance on
three databases.
MSR-Action3D(S1): 20 actions are performed by 10 subject-
s. The total number of the action sequences is 544.
MSR-DailyActivity3D(S2): 16 actions are performed by 10
subjects. The total number of the activity sequences is 320.
MSRC-Kinect12(S3): 12 gestures are performed by 30 sub-
jects. 594 sequences and 719,359 frames are used. In total,
there are 6,244 gesture instances.

4.1. Feature Representation of 3D skeletons

In the paper, we use the same configurations in [3][16][15],
where only skeletal data is used. In S1, S2, each frame is rep-
resented by 120-dimensional differential velocity processed
by [4]. In S3, each frame is used by 60-dimensional 3D-
coordinate positions. The skeletal structures are uniformly
normalized by preliminaries in [4]. The hyper-parameters are
set by the cross-validations, where the prior penalty π = 0.01
in S1-S3 and K = 650, 800, 1000 in S1-S3, respectively.

4.2. Classification Strategy

For a fair comparison, the implementation of the classification
in our experiments is based on the available code provided by
the authors in [3] and [16]. In the experiments, Multiple Ker-
nel Learning(MKL) is applied to combine with different SPD
matrix representations. The final classification is implement-
ed by the SVM classifier. For the metric of SPD matrix, we
use log-Euclidean Riemannian metric, which is easily calcu-
lated by ||log(X) − log(Y)||2, where X and Y represent
two SPD matrices. In addition, we respect the protocol that
cross-subject test is used, where the odd-indexed subjects are
used for training while the even-indexed subjects are used for
testing.

4.3. Comparison Methods based on Covariance Matrix

In our experiments, six kinds of variants of the covariance-
based feature representation are compared with our proposed
SPA-Cov. The empirical covariance is denoted by Empirical-
Cov for simplicity, and is calculated by (1). We compute
the posterior covariance(Posterior-Cov) by (16). Infinite-
Cov is measured by the metric of Bregman Divergences[17].
Temporal-Cov is implemented by the paper[15]. We adopt
two kernels, RBF kernel and Polynomial kernel in [3], for
comparison, which are named Kernel-RBF and Kernel-POL.
Kernelized Covariance feature is denoted by Kernelized-Cov,
which uses random fourier features in the paper[16].

The recognition accuracy of the compared methods are
showed in Table 1. We can observe that the Empirical-cov
has the worst performance compared to other covariance-
based representations due to the linearity relationship and the
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Fig. 1. Illustration of the significance of the saliency poses
for recognition.

(a) (b) (c) (d)

Fig. 2. The average distances between 16 action categories
with respect to (a) Empirical-Cov, (b) Kernel Matrix(RBF),
(c) Kernelized-Cov, (d) proposed SPA-Cov in S2 database.

sample scarcity. Infinite-Cov and Kernelized-Cov are gener-
ated by the similar process, but they take on the very different
results. This is because that Kernelized-Cov applies the same
MKL representation as in Kernel-RBF, whereas Infinite-Cov
uses a Bregman Divergences to measure infinite-dimensional
covariances and directly conduct classification by a SVM
classifier. In performance, Posterier-Cov achieves the closely
identical results with Kernel-based feature representations.
This phenomenon means that the empirical covariance in-
duced by a period of action sequence fails to express the real
statistical features on a manifold space. We specially impose
the prior knowledge to penalize covariance rather than ap-
pend a scaled diagonal identity matrix to against singularity.
Therefore, our Posterior-Cov greatly improves the recogni-
tion performance. From another point of view, our Posterior-
Cov is equivalent to the Kernel methods when a specific
form of multiplication of data matrices is given. In Table
1, Kernelized-Cov also achieves the same level of results.
This is because that it essentially has the same discriminative
information compared with Kernel-based representations.

In the proposed SPA-Cov, we allow for the significance
of the saliency poses for recognition, which is illustrated in
Fig.1. We use K-means algorithm to cluster pose samples in
S2. Note that pose categories have various saliency levels for
different action categories. For example, 8-th pose category
has the large entropy about its category distribution, which
means it has low-saliency for classification tasks, and thus
needs the low-weighting for generating covariances. In con-
trast, 9-th is of zero-uncertainty so that it has high-weighting
for generating covariances. As a result, the generated co-
variances will be closer in a manifold space when they be-

Methods/Databases S1 S2 S3
Pose Set[21] 90.0 -/- -/-

Moving Pose[4] 91.7 73.8 -/-
Empirical-Cov[10] 74.0 85.0 89.2

Infinite-Cov[17] 80.4 75.0 89.2
Temporal-Cov[15] 90.5 93.5 91.7

Kernel-RBF[3] 96.2 96.3 92.3
Kernel-POL[3] 96.9 96.9 90.5

Kernelized-Cov[16] 96.2 96.3 95.0
Proposed Posterior-Cov 96.2 96.3 89.5

Proposed SPA-Cov 96.2 97.5 90.5
Proposed Posterior-SPA-Cov 96.9 97.5 91.5

Table 1. Recognition accuracy (%) on S1, S2, S3. The sign
of ’-/-’ means that no results are reported in the paper.

long to the same action category, and farther when they be-
long to the different action categories, as shown in Fig.2. In
(d), the distances in off-diagonal positions are getting larg-
er while the distances in diagonal are getting smaller com-
pared to empirical covariance in (a). The SPA-Cov intuitively
seems better than Kernel-Matrix and Kernelized-Cov. More-
over, the SPA-Cov representation still retains linearity rela-
tionship compared to Kernel-based Covariances, e.g. Kernel-
RBF, Kernelized-Cov.

In Table.1, We can observe that the proposed SPA-Cov
efficiently improves the discriminative power of the empiri-
cal covariance. Meanwhile, it also outperforms the state-off-
the-art performance in S2 and achieves the identical results in
S1. However, in S3, the recognition accuracy of SPA-Cov is
less than Kernelized-Cov. The reason might be that it only
utilizes the linearity relationship or it fails to get a very ef-
fective saliency weighting. Therefore, we will carry on the
study for some solutions and explore more expressive feature
representations in the future.

5. CONCLUSIONS

The poses in actions have the various saliency levels for the
different action categories. The empirical covariance generat-
ed by the averagely weighting poses will degrade the perfor-
mance of recognition tasks. To solve this issue, we propose
an approach selecting discriminative saliency poses to gener-
ate covariance, which is able to reduce the negative effects
caused by the ambiguous poses according to the low-saliency
levels. Experiments verify that the proposed SPA covariance
efficiently improves the representation power of the generat-
ed covariance. Moreover, our approach is scalable that it can
be extended to combine with the other methods, e.g. a prior
knowledge is imposed to against singularity of sample scarci-
ty. In the future work, we will explore more efficient methods
to mine the saliency poses and extend it to much more cases,
e.g. non-linear kernels, spatio-temporal representations, etc.

2135



6. REFERENCES

[1] Ondrej Glembek, Jeff Ma, Pavel Matejka, Bing Zhang,
Oldrich Plchot, Lukas Burget, and Spyros Matsoukas,
“Domain adaptation via within-class covariance cor-
rection in i-vector based speaker recognition systems,”
in Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2014, pp. 4032–4036.

[2] Xi Li, Weiming Hu, Zhongfei Zhang, Xiaoqin Zhang,
Mingliang Zhu, and Jian Cheng, “Visual tracking vi-
a incremental log-euclidean riemannian subspace learn-
ing,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[3] Lei Wang, Jianjia Zhang, Luping Zhou, Chang Tang,
and Wanqing Li, “Beyond covariance: Feature repre-
sentation with nonlinear kernel matrices,” in Proceed-
ings of the IEEE International Conference on Computer
Vision, 2015, pp. 4570–4578.

[4] Mihai Zanfir, Marius Leordeanu, and Cristian Sminchis-
escu, “The moving pose: An efficient 3d kinematics
descriptor for low-latency action recognition and detec-
tion,” in Proceedings of the IEEE international confer-
ence on computer vision, 2013, pp. 2752–2759.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” in Ad-
vances in Neural Information Processing Systems, 2017,
pp. 5998–6008.

[6] Weilong Yang, Yang Wang, and Greg Mori, “Recogniz-
ing human actions from still images with latent poses,”
in Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on. IEEE, 2010, pp. 2030–2037.

[7] Maxime Devanne, Hazem Wannous, Stefano Berretti,
Pietro Pala, Mohamed Daoudi, and Alberto Del Bim-
bo, “Space-time pose representation for 3d human ac-
tion recognition,” in International Conference on Image
Analysis and Processing. Springer, 2013, pp. 456–464.

[8] Chunyu Wang, Yizhou Wang, and Alan L Yuille, “Min-
ing 3d key-pose-motifs for action recognition,” in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2639–2647.

[9] Shuangjie Xu, Yu Cheng, Kang Gu, Yang Yang, Shiyu
Chang, and Pan Zhou, “Jointly attentive spatial-
temporal pooling networks for video-based person re-
identification,” arXiv preprint arXiv:1708.02286, 2017.

[10] Oncel Tuzel, Fatih Porikli, and Peter Meer, “Region
covariance: A fast descriptor for detection and classi-
fication,” in European conference on computer vision.
Springer, 2006, pp. 589–600.

[11] Ruiping Wang, Huimin Guo, Larry S Davis, and Qiong-
hai Dai, “Covariance discriminative learning: A natu-
ral and efficient approach to image set classification,” in
Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on. IEEE, 2012, pp. 2496–2503.

[12] Mehrtash T Harandi, Conrad Sanderson, Richard Hart-
ley, and Brian C Lovell, “Sparse coding and dictionary
learning for symmetric positive definite matrices: A k-
ernel approach,” in Computer Vision–ECCV 2012, pp.
216–229. Springer, 2012.

[13] Piotr Koniusz and Anoop Cherian, “Sparse coding for
third-order super-symmetric tensor descriptors with ap-
plication to texture recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 5395–5403.

[14] Piotr Koniusz, Anoop Cherian, and Fatih Porikli, “Ten-
sor representations via kernel linearization for action
recognition from 3d skeletons,” in European Confer-
ence on Computer Vision. Springer, 2016, pp. 37–53.

[15] Mohamed E Hussein, Marwan Torki, Mohammad Ab-
delaziz Gowayyed, and Motaz El-Saban, “Human ac-
tion recognition using a temporal hierarchy of covari-
ance descriptors on 3d joint locations.,” in IJCAI, 2013,
vol. 13, pp. 2466–2472.

[16] Jacopo Cavazza, Andrea Zunino, Marco San Biagio,
and Vittorio Murino, “Kernelized covariance for action
recognition,” in Pattern Recognition (ICPR), 2016 23rd
International Conference on. IEEE, 2016, pp. 408–413.

[17] Mehrtash Harandi, Mathieu Salzmann, and Fatih Porik-
li, “Bregman divergences for infinite dimensional co-
variance matrices,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
2014, pp. 1003–1010.

[18] Mehrtash T Harandi, Mathieu Salzmann, and Richard
Hartley, “From manifold to manifold: Geometry-aware
dimensionality reduction for spd matrices,” in European
conference on computer vision. Springer, 2014, pp. 17–
32.

[19] Zhiwu Huang and Luc J Van Gool, “A riemannian net-
work for spd matrix learning,” in AAAI, 2017, p. 3.

[20] Andres Sanin, Conrad Sanderson, Mehrtash T Harandi,
and Brian C Lovell, “Spatio-temporal covariance de-
scriptors for action and gesture recognition,” in Applica-
tions of Computer Vision (WACV), 2013 IEEE Workshop
on. IEEE, 2013, pp. 103–110.

[21] Chunyu Wang, Yizhou Wang, and Alan L Yuille, “An
approach to pose-based action recognition,” in Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2013, pp. 915–922.

2136


		2019-03-18T11:18:55-0500
	Preflight Ticket Signature




