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ABSTRACT

Dimensionality reduction is an essential technique for multi-
way large-scale data, i.e., tensor. Tensor ring (TR) decom-
position has become popular due to its high representation
ability and flexibility. However, the traditional TR decompo-
sition algorithms suffer from high computational cost when
facing large-scale data. In this paper, taking advantages of
the recently proposed tensor random projection method, we
propose two TR decomposition algorithms. By employing
random projection on every mode of the large-scale tensor,
the TR decomposition can be processed at a much smaller
scale. The simulation experiment shows that the proposed al-
gorithms are 4 − 25 times faster than traditional algorithms
without loss of accuracy, and our algorithms show superior
performance in deep learning dataset compression and hyper-
spectral image reconstruction experiments compared to the
other randomized algorithms.

Index Terms— tensor ring decomposition, randomized
algorithms, data reconstruction, large-scale data

1. INTRODUCTION

With the development of data acquisition and storage tech-
nology, large-scale data (i.e., big data) becomes ubiquitous
in many fields such as computational neuroscience, signal
processing, machine learning and pattern recognition [1].
Among these fields, large amounts of multi-dimensional data
(i.e., tensors) of high dimensionality are generated. Big data
is of large volume and complex, which is hard to process by
traditional methods like singular value decomposition (SVD)
and principal component analysis (PCA) due to their high
computational complexity. Moreover, in order to fit in these
algorithms, traditional methods need operations to transform
tensor data to matrices and vectors, which leads to the loss of
adjacent structure information and the redundant space cost
of data [2].
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Tensor is the natural representation of high-order data
which can retain the high-order structure of the data and
prevent from information loss. Tensor decomposition aims
to approximate the tensor by the latent factors, thus trans-
forming large-scale tensor data into a latent space of low-
dimensionality and reducing the data dimensionality. CAN-
DECOMP/PARAFAC (CP) decomposition [3] and Tucker
decomposition [4] are the most classical and well-studied
tensor decomposition models, after which tensor train (TT)
decomposition [5] and tensor ring (TR) decomposition [6] be-
come popular because of their high compression performance
in high-order and large-scale tensor. TT decomposition and
TR decomposition provide natural solutions for the ‘curse of
dimensionality’. For instance, for an N th-order tensor, the
space complexity of Tucker grows exponentially in N , while
the cases of TT, TR and CP are linear in N . Although CP is
a highly compact decomposition model of which the space
complexity is also linear in N , it has difficulties in finding the
optimal latent tensor factors [7].

Though tensor decomposition has the merits of data struc-
ture conservation and high data representation ability, when
dealing with large-scale data, traditional deterministic algo-
rithms like alternative least squares (ALS) and gradient de-
scent (GD) are of low-efficiency due to their high compu-
tational cost and low convergence rate. Therefore, fast and
efficient algorithms are of high demand for large-scale ten-
sor decomposition. The randomized technology is a powerful
computation acceleration technique which has been proposed
and studied for decades [8, 9]. Recently, randomness-based
tensor decomposition has drawn people’s attention. Liter-
ature [10] proposes a randomized algorithm for large-scale
tensors based on Tucker decomposition, it can process arbi-
trarily large-scale tensors with low multi-linear rank and the
method shows robustness to various data set. A randomized
least squares algorithm for CP decomposition is proposed in
[11], it is much faster than the traditional CP least squares al-
gorithm and can keep the high performance at the same time.
The work in [12] provides a different randomized CP decom-
position algorithm, they first find the CP decomposition of the
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small tensor which is generated by tensor random projection
of the large-scale tensor, then the CP decomposition of the
large-scale tensor is obtained by back projection of the CP
decomposition of the small tensor.

Many of these randomized tensor decomposition algo-
rithms are efficient and perform well in simulation experi-
ments. However, to the best of our knowledge, randomized
techniques have not been applied to TR decomposition, and
few studies are conducted to explore the performance of ran-
domized tensor decomposition algorithms in real-world data.
Facing the fact that TR decomposition lacks fast and efficient
algorithms for large-scale tensor, in this paper, we explore
the effectiveness of tensor random projection method on TR
decomposition. The main contribution of this paper is listed
below:

• Based on tensor random projection method and tradi-
tional TR decomposition algorithms, we propose two
randomized TR decomposition (rTRD) algorithms,
which are suitable for fast and reliable tensor decom-
position of large-scale data.

• The proposed algorithms are compared with the tradi-
tional TR decomposition algorithms in the simulation
experiment. The randomized algorithms obtain a sig-
nificant advantage in computational speed against tra-
ditional algorithms without loss of accuracy.

• The experiments on deep learning datasets and hyper-
spectral image (HSI) data are conducted. The proposed
algorithms outperform the compared randomized ten-
sor decomposition algorithms in data compression and
reconstruction tasks.

2. NOTATIONS AND PRELIMINARIES

2.1. Notations

The notations in [13] are adopted in this paper. Tensors
of order N ≥ 3 are denoted by calligraphic letters, e.g.,
X ∈ RI1×I2×···×IN . Scalars are denoted by normal lower-
case letters or uppercase letters, e.g., x,X ∈ R. Vectors are
denoted by boldface lowercase letters, e.g., x ∈ RI . Matrices
are denoted by boldface capital letters, e.g., X ∈ RI×J . For
simplicity, we define tensor sequence {X 1,X 2, . . . ,XN}
as {Xn}Nn=1 or [Xn]. The scalar sequence, matrix se-
quence and vector sequence are denoted by the same way.
Moreover, we employ two types of tensor unfolding (ma-
tricization) operations in this paper. The first mode-n un-
folding of tensor X ∈ RI1×I2×···×IN is denoted by X(n) ∈
RIn×I1···In−1In+1···IN , and the second mode-n unfolding of
tensor X which is often used in TR operations is denoted by
X<n> ∈ RIn×In+1···INI1···In−1 [6]. In addition, the Frobe-
nius norm of X is defined by ‖X‖F =

√
〈X ,X 〉, where

〈·, ·〉 is the inner product operation.

2.2. Tensor Ring Decomposition

TR decomposition is a more general decomposition than TT
decomposition. It represents a high-order tensor by circular
multilinear products over a sequence of core tensors (i.e., TR
factors). All of the TR factors are 3rd-order tensors, which are
denoted by {Gn}Nn=1, Gn ∈ RRn×In×Rn+1 , n = 1, . . . , N .
In the same way as the TT decomposition, the TR decom-
position linearly scales to the order of the tensor, thus it can
overcome the ‘curse of dimensionality’. R1, R2, . . . , RN de-
notes the TR-rank which controls the model complexity of
TR decomposition. Compared to the TT decomposition, the
TR decomposition relaxes the rank constraint on the first and
the last core tensors to R1 = RN+1, while the original con-
straint on TT is rather stringent, i.e., R1 = RN+1 = 1. TR
applies trace operation and all the TR factors are constrained
to be third-order equivalently. In this case, TR can be consid-
ered as a linear combination of TT and thus it offers a more
powerful and generalized representation ability than TT. The
element-wise relation and global relation of the TR decompo-
sition and the tensor is given by equations (1) and (2):

X (i1, i2, . . . , iN ) = Trace

{
N∏

n=1

Gn(in)

}
, (1)

X<n> = Gn,(2)(G6=n,<2>)T , (2)

where Trace{·} is the matrix trace operator, Gn(in) ∈
RRn×Rn+1 is the inth mode-2 slice of Gn, which also
can be denoted by Gn(:, in, :) according to Matlab syntax.
G 6=n ∈ RRn+1×

∏N
i=1,i 6=n Ii×Rn is a subchain tensor by merg-

ing all TR factors except the nth core tensor, see more details
in [14].

3. APPROACH

3.1. Tensor Random Projection

Tensor random projection (TRP) has drawn people’s attention
in the very recent years, and several studies has been con-
ducted based on CP and Tucker [12, 10]. Similar to matrix
projection, TRP method aims to process random projection
at every mode of the tensor, then a much smaller subspace
tensor is obtained which reserves most of the actions of the
original tensor. The TRP is simply formulated as follows:

X ≈ X ×1 Q1Q
T
1 ×2 · · · ×N QNQT

N

≈ P ×1 Q1 ×2 · · · ×N QN ,
(3)

where ×n is the mode-n tensor production, see details in
[13], [Qn] are the orthogonal matrices, and P is the projected
tensor. After projection, the projected tensor P is employed
to calculate the desired low-rank approximation of the origi-
nal large-scale tensor. The implementation details of the TRP
method are illustrated in the next subsection.
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3.2. Randomized Tensor Ring Decomposition

The problem of finding TR decomposition is formulated by
the following model:

min
[Gn]
‖X −Ψ([Gn])‖2F , (4)

where X is the target tensor to be decomposed, [Gn] are the
TR factors to be considered, and Ψ(·) is the function which
transform the TR factors into the approximated tensor. In
[14], the model is solved by various methods like TRSVD,
TRALS, TRSGD, etc. However, the SVD-based and ALS-
based algorithms are of high computational cost. When facing
large-scale data, tremendous computing resource is needed.
In addition, though TRSGD owns low complexity on every
iteration and is suitable for large-scale computation, the con-
vergence speed is rather slow and the performance cannot be
guaranteed. Under this situation, we combine the TRP tech-
nique with the traditional TR decomposition algorithms, (e.g.
TRALS and TRSVD), to make it possible for fast and reliable
TR decomposition of large-scale tensor. The randomized ten-
sor ring decomposition (rTRD) algorithms which is based on
ALS (i.e., rTRALS) and SVD (i.e., rTRSVD) are illustrated
by Algorithm 1.

Algorithm 1 Randomized tensor ring decomposition (rTRD)
1: Input: A large-scale tensor X ∈ RI1×I2×...×IN ,

the projection size of every mode [Kn],
and the TR-rank R1, . . . , RN .

2: Output: TR factors [Gn] of the large-scale tensor X .
3: For n = 1, . . . , N

4: Create matrix M ∈ R
∏N

i=1,i 6=n Ii×Kn following
the Gaussian distribution.

5: Y=X(n)M % random projection
6: [Qn,∼] = QR(Y) % economy QR decomposition
7: P ← X ×n QT

n

8: End for
9: Obtain TR factors [Zn] of P by TRALS or TRSVD [6] .

10: For n = 1, . . . , N
11: Gn = Zn ×n Qn.
12: End for

It should be noted that for randomized algorithms, sev-
eral techniques can be applied to the projection step to im-
prove the numerical stability of the projection, thus providing
higher decomposition performance. For example, adopting
structured projection matrices instead of Gaussian distribu-
tion [15] and applying power iterations method to update the
projected tensor in order to achieve fast decay of the spec-
trum of the mode-n unfolding of the projected tensor [8]. In
our paper, we only adopt the most basic TRP in order to show
the direct improvements compared to the traditional decom-
position algorithms.

4. EXPERIMENT RESULTS

In the experiment section, we firstly investigate the influ-
ence of the size of the projected tensor and compare our

randomized algorithms with their traditional counterparts
(i.e., rTRALS vs. TRALS, and rTRSVD vs. TRSVD). Then
we conduct experiments on two large-scale deep learning
datasets for fast data compression. Finally, a hyperspectral
image (HSI) is employed to test the performance of our al-
gorithm on data reconstruction and denoising. For evaluation
index, we mainly adopt relative square error (RSE) which is
calculated by RSE = ‖X − Y‖F /‖X‖F , where X is the
target large-scale tensor and Y is the tensor approximated by
the corresponding decomposition factors. All the computa-
tions are conducted on a Mac PC with Intel Core i7 and 16GB
DDR3 memory.
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Fig. 1. Reconstruction results of six tensor decomposition
algorithms under different tensor projection size. Figure (a)
and (b) show the RSE values and the time cost respectively.

4.1. Simulation

The most important hyper-parameter of the tensor projection
step is the projection size which determines the amount of
residual information to be remained and controls the balance
of computational speed and accuracy. In this experiment, we
aim to explore how the size of the projected tensor influences
the performance of our algorithms, and compare the per-
formance with the related tensor decomposition algorithms.
Except for our proposed algorithms, the rCPALS [12] which
is the most related method is also adopted in this experi-
ment. The counterparts of the three randomized algorithms
are TRALS, TRSVD [6] and CPALS [13] respectively. We
choose a RGB image of size 1024×1024×3 as the simulation
data. The projection size of order 1 and order 2 of the tensor
data are chosen from {25, 50, 75, 100, 125, 150, 175, 200},
and the order 3 of the tensor remains as 3. As for parameter
settings, we set the TR-rank as {10, 10, 10}, CP-rank as 50,
and the maximum iteration as 50 for ALS-based algorithms.
For TRSVD and rTRSVD, only one iteration is needed and
the TR-rank is automatically chosen, so we only set the tol-
erance as 0.15. Figure 1 shows the approximation error (i.e.,
RSE) and computation time of the compared algorithms.
When the projection size reaches a specific value, the perfor-
mance of the randomized algorithms remain steady and sim-
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Table 1. Comparison of the compression performance of randomized algorithms under two deep learning datasets.
Cifar10 Coil100

CR RSE time CR RSE time CR RSE time CR RSE time
rTRALS 102.3 0.2185 18.29 767.0 0.3294 17.39 2948.7 0.3331 40.99 1047.3 0.2911 42.61
rTRSVD 42.64 0.1791 10.63 42.6 0.1791 10.85 175.4 0.2669 1.49 175.4 0.2663 1.96
TRSGD 102.3 0.4382 1.21e3 767.0 1.00 6.27e2 2948.7 0.4158 482.64 1047.3 0.3536 411.12
rCPALS 99.0 0.2254 11.32 613.6 0.3284 10.86 3084.9 0.3434 2.12 1028.3 0.3001 5.80
rTucker 100.8 0.2146 10.65 509.2 0.3058 4.61 3093.5 0.4241 0.38 1077.4 0.4680 1.98

ilar performance with their counterparts are obtained. From
time graph we can see, at the steady points where the perfor-
mance of the algorithm pairs are similar, rTRALS is about
24 times faster than TRALS (2.0s vs 48.1s), and rTRSVD is
about 4 times faster than TRSVD (0.11s vs 0.43s).

4.2. Deep Learning Dataset Compression

In this section, we aim to compare the compression perfor-
mance and running time of the proposed algorithms and the
other randomized tensor decomposition method on two deep
learning datasets (i.e., CIFAR10 [16] of size 32 × 32 × 3 ×
50000 (training data) with 1.5× 108 elements, and COIL100
[17] of size 32 × 32 × 3 × 72 × 100 with 2.2 × 107 ele-
ments). The traditional algorithms will be inefficient because
the datasets are too large, so we only compare our algorithms
to the algorithms which are suitable for large-scale data, i.e.,
TRSGD [14], rTucker [10] and rCP [12]. The compression
ratio (CR) is calculated by CR = Num/Np, where Num is
the total entries of the data and Np is the number of model pa-
rameters. CR is controlled by different rank selection, and for
rTRSVD, we set the tolerance as 0.15 for automatical rank-
selection. Table 1 shows the compression error and time cost
of all the compared algorithms. rTRSVD and rTRALS show
high accuracy and low time cost in all the situations, while
TRSGD is much slower and obtains relatively low accuracy.
Though rCPALS and rTucker are fast, their decomposition er-
rors are higher than our algorithms.

4.3. Hyperspectral Image Denoising

Hyperspectral image (HSI) is a typical 3rd-order tensor (i.e.,
height×weights×bands) with large-scale. For HSI image,
the spectrum-mode (mode-3) is usually considered to have
strong low-rankness, so the projection of mode-3 can largely
reduce the computational cost. In this experiment, in addition
to the algorithms compared in the last section, we also employ
rSVD [8] which is often used in HSI image processing and
rSVD is implemented by mode-3 unfolding operation. The
projection size of all the algorithms are set as 100×100×6 for
the tested 200×200×80 HSI image, and the other parameters
are set to get the best performance. Figure 2 and Table 2
show the visual and numerical results respectively. rTRALS
outperforms the compared algorithms in the experiment.

Input rTRALS rTRSVD TRSGD rSVDRandTuckerrCPALS

Original

0dB

20dB

10dB

Fig. 2. Visual results of HSI data reconstruction with different
noise

Table 2. Numerical results of HSI data reconstruction with
different noise
Noise rTR-ALS rTR-SVD TR-SGD rCP-ALS rTucker rSVD

-
RSE
Time

0.0150
60.01

0.149
0.45

0.249
9.45

0.100
5.38

0.0110
0.50

0.0303
1.84

20dB
RSE
Time

0.0294
60.21

0.143
1.20

0.253
206.82

0.101
3.97

0.0388
0.54

0.0594
2.33

10dB
RSE
Time

0.0811
59.61

0.113
1.27

0.293
210.89

0.107
3.91

0.114
0.46

0.156
2.08

0dB
RSE
Time

0.285
59.05

0.328
0.78

0.437
206.62

0.166
3.95

0.367
0.44

0.431
1.87

5. CONCLUSION

In this paper, based on tensor random projection method, we
proposed rTRALS and rTRSVD algorithms for fast and re-
liable TR decomposition. Without losing accuracy, the two
algorithms perform much faster than their traditional coun-
terparts and outperform the compared randomized algorithms
in deep learning dataset compression and HSI image recon-
struction experiments. Randomized method is a promising
aspect for large-scale data processing. In our future work, we
will focus on further improving the performance of decom-
position and applying randomized algorithms to sparse and
incomplete tensors.
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