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ABSTRACT

Vehicle re-identification (re-id) plays an important role in in-
telligent surveillance. Since difference vehicle models may
have similar appearances, together with the problem of image
scale variations, the vehicle re-id remains long-term challeng-
ing. We present a novel multi-scale vehicle re-id framework
using self-adapting label smoothing regularization (SLSR). It
integrates the appearance information from multi-scale im-
ages to alleviate the influence of scale changes caused by per-
spectives. To enhance the generalization ability in feature rep-
resentations, we design the self-adapting label smoothing reg-
ulation in semi-supervised training process. It dynamically
assigns labels to fake images to realize data augmentation.
We validate the effectiveness of our proposed framework on
popular VeRi and VehicleID datasets. Extensive experimental
results demonstrate that our method outperforms most state-
of-the-art methods on both datasets. Especially, we exceeds
the latest method by 3.81% in mAP and 5.32% in rank-1 on
VeRi dataset.

Index Terms— Vehicle Re-Identification, Semi-Supervised,
Multi-Scale, Deep Neural Network

1. INTRODUCTION

Vehicle re-identification (re-id) is an important task in the
field of computer vision, which refers to retrieve specified
targets from large-scale gallery image set. In existing meth-
ods, license plate information [1] and appearance features
[2, 3, 4, 5, 6, 7] are the key cues for fine-grained classifica-
tion. Since that the license plate is easily to be occluded and
falsified, this paper focuses on appearance-based vehicle re-
id. With the rapid development of deep learning, DRDL [5],
VAMI [6], and OIFE [3] are successively proposed and have
achieved good performances on popular vehicle re-id datasets
[1, 2]. However, the scale variations caused by the perspective
relationship and the low discrimination among vehicles with
same model still need to be solved in practical applications.
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Fig. 1. Difficulty analysis of VeRi dataset. (a) Error match
caused by image scales variation. The values represent the
similarity scores between image pairs. (b) Different cars with
similar models. (c) Imbalanced distribution of data size in
VeRi dataset. The horizontal axis indicates number of images
in a class. The vertical axis denotes class number.

Taking popular VeRi dataset as an example, image size
variations have obvious influence in similarity metric (Fig.
1(a)). The same/simliar model reduces the discrimination of
the vehicle images (in Fig. 1(b)). To solve these problems,
many methods have been proposed. Wang et al. [3] utilize 20
key point locations to locate ROIs for local feature extraction
and then compose them into embedded features. Sockor et
al. [6] estimate the image viewpoint and 3D bounding box
to unpack the vehicle image into a plane for feature learning.
Based on these methods, Jiang et al. [7] proposed intra-class
similarity function and spatial-temporal re-ranking strategy,
and get further improvement on Rank-1 accuracy. However,
these methods are still limited by imbalance data distribution
and insufficient data. As shown in Fig. 1(c), the number of
images in each class varies greatly. Some classes in VeRi
dataset have more than 150 images, while there are less than
30 images in some classes.

Because of the imbalanced data, the network pays more
attention to the classes with enough samples, while ignoring
the classes which lack samples. When the data distributions
are quite different between the train set and the test set, the
generalization ability of the trained network drops sharply.
Regarding the three puzzled issues of vehicle re-id shown
in Fig. 1, we propose a multi-scale vehicle re-identification
framework exploiting self-adapting label smoothing regular-
ization(SLSR). Our method integrates feature maps from dif-
ferent scale inputs by dense connections. The integrated fea-
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tures include the detailed information from the large images
and the abstract information from the small images, which re-
alizes the perception of images in different scales and allevi-
ates the influence of scale variations on similarity metric. We
also introduce SLSR as a semi-supervised training strategy.
It can dynamically assign trained labels to the GAN gener-
ated images (fake images). The fake images and real images,
thereby, can break the bottlenecks of insufficient data. To ver-
ify the effectiveness of our proposed approach, we conduct
on a series of experiments on popular VeRi and VehicleID
datasets. The results demonstrate that our approach achieve
outstanding performance on Rank-1 and mAP.

2. PROPOSED METHODS

We describe our proposed vehicle re-id framework in this
section. As is demonstrated in Fig. 2, it consists of multi-
scale feature extraction network (in Section 2.1) and semi-
supervised learning strategy with SLSR (in Section 2.2).

Fig. 2. Architecture of our proposed framework. We train
generative adversarial network (GAN) with real images from
the train set, then we generate fake images, which serve as
auxiliary materials, and jointly trained with real images for
data augmentation. Each training sample is resized to 3 scales
to train the multi-scale feature extraction network. In addi-
tion, we use hard example mining strategy to decrease intra-
class distance and increase the inter-class distance, it is not
introduced in detail because it is just a trick and not our con-
tribution.(Best viewed in color)

2.1. Multi-Scale Feature Extraction Network

In a real surveillance scenario, the sizes of the captured ve-
hicle images are not fixed because of the different perspec-
tives. The training strategies which resize the images to the
same scale directly drop some useful information inevitably.
In order to make use of the information contained in images
of different scales and make it complementary, we design the
scale aware module. We utilize three branches without shar-
ing weights to extract feature maps from multi-scale inputs,
and integrate features via densely connection. By adding su-
pervision signal to the three branches, we regulate the classi-
fication behavior of each branch simultaneously.

Fig. 3. Details of the proposed multi-scale feature extraction
network. It contains three branches. Each images are resized
to three scales (112×112, 224×224, 448×448) as inputs to
the three branches. The dotted lines indicate the source and
target blocks of feature map integration. After the last dense
block in each branch, there are feature extraction layer and
classification layer. The training of each branch is supervised
under the same identity class label constraint concurrently.

The overall network structure of our proposed multi-scale
vehicle re-identification network is illustrated in Fig. 3. It
consists of three branches for scale-specific inputs, so as to
learn the appearance features of the same vehicle image in
different scales. The to-be-concatenate feature maps have the
same dimension, because we expect feature of each scale has
similar effect on the final feature. Instead of concentrating
only on the output of backbone, we add supervisory signal on
not only the backbone, but also the two subnets. Intuitively,
we hope the network can identify a vehicle correctly both at
a glance (image of small size) and at a close look (image of
large size).

2.2. Semi-supervised Learning Strategy with SLSR

2.2.1. Generation of Fake Images

In order to generate fake images, we train DCGAN with real
images in vehicle datasets. We show some fake images in
Fig. 4. Compared with VeRi in Fig. 4(a), fake images from
VehicleID in Fig. 4(b) need less training epochs and achieve
substantially higher quality. There may be two reasons for
this difference. On one hand, real images in VehicleID have
higher native resolution than those in VeRi. On the other
hand, VehicleID only contains pictures facing forward or
backward, while the orientation of vehicles is various in
VeRi.

(a) (b)

Fig. 4. Generated images from DCGAN.
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2.2.2. Self-Adapting Label Smoothing Regularization

One-hot label only concentrates on the groundtruth class,
while LSR [8] pays some attention to other classes. However,
LSR cannot be used straightly on fake images, as the they
do not have explicit labels. Pesudo-label [9] and LSRO [10]
provide two ways of assigning groundtruth to fake images.
To design a more appropriate label distribution function, we
analyse the fake images.

Statistically, we found that the number of classes that
get the highest predicted probability is usually not fixed. As
shown in Table 1, where NC refers to the number of classes
which have been predicted to have highest response for an
image during 30 epochs, and NI refers to the number of
images that have the given number of highest responding
classes. The statistical result on 19200 images indicates that
the predicted probability distribution is not stable. There is no
indication that a fake image belongs to a particular class, so
it is unconscionable to assign one-hot labels to fake images.
What is more, it is always the few classes that get the highest
responding. Therefore, rather than treat all classes equally as
LSRO, it is reasonable to pay more attention on these classes.

Table 1. Distribution of fake images according to total num-
ber of the highest-response classes in 30 epochs.

NC 1 2 3 4 5 more
NI 2400 5740 5068 3449 1772 771

LSR gives a small and equal possibility to every non-
groundtruth class, which is effective to avoid over-fitting.
LSRO assigns equal possibilities to all classes for fake im-
ages, which enables the jointly training of fake images and
real images. Inspired by them, we proposed our self-adapting
label smoothing regularization (SLSR). During each training
step, the class with maximum predicted possibility is treated
as groundtruth. The probability of each non-groundtruth
class is equal, and it is slightly higher for groundtruth class.
In contrast to the one-hot in Eq. 1, label distribution of SLSR
qSLSR can be defined as Eq. 2.

qone−hot(k) =

{
0, k 6= g

1, k = g
(1)

qSLSR(k) =


1

K
− ε

k
, k 6= g

1

K
+
k − 1

k
ε, k = g

(2)

where k ∈ {1, 2, ...,K} is one of the classes of vehi-
cle dataset, and K is the total number of classes, g is the
groundtruth of the input image. ε ∈ [0, 1] decides the prob-
abilitic difference between groundtruth and non-groundtruth
classes.

The SLSR is adopted based on the following reasons.
It’s obvious that the images belonging to the same class or

same/similar model have similar appearance, which we refer
to as “common features”, and each of them has some par-
ticular attributes, which are called “unique features” in the
following sections. On one hand, for different vehicles with
same/similar model, the network may become confused if it
focuses too much on the common features. After training
DCGAN, the fake images show similar common features to
the real images that DCGAN learns from. Giving a SLSR
label to the fake images, the network will be punished if it
attaches undue importance on common feature and output an
extreme high possibility on one class. With the training going
on, the network responses more to the unique feature gradu-
ally. Therefore, it becomes easy to distinguish vehicles with
same/similar models. On the other hand, for the classes with
small amounts of samples, network is difficult to understand
the common features of them. On the contrary, it may focus
too much on the unique features. For example, if there are
few samples in a class, and one sample has an unusual color
in train set coincidentally, the network will treat the color
as a discriminative feature. However, in read world, vehicle
images with such a color are not necessarily belonging to the
same class. By importing fake samples with similar color
into training, if the network makes a wrong prediction toward
a labeled sample just because they have a similar and rare
color, it will be punished. During back propagation stages,
the network can pay attention to other features gradually,
obtain a good understanding of the input images and apply
relatively fair attentions for features in an image.

3. EXPERIMENTS

We design a series of experiments to analyze the effectiveness
of our proposed method. In these experiments, we adopt the
Titan Xp as the arithmetic unit and analyze results comparing
with some state-of-the-art methods on two popular datasets,
VeRi [1] and VehicleID [2].

3.1. Dataset Descriptions and Implementation Details

VehicleID dataset contains 221763 images belonging to
26267 vehicles and is split into train/test subsets. VeRi dataset
is divided into the testing set containing 11,579 images of 200
vehicles and the training set containing 37,781 images of 576
vehicles. Compared with VeRi dataset, VehicleID dataset is
more challenging.

We perform all experiments on the Caffe [11] platform.
We select DenseNet-121 as baseline, which connects each
layer to every other layers in the same block to strengthen
feature propagation and performs well in classification tasks.
For the multi-scale feature extraction structure, in the train-
ing stage, the pre-training model of DenseNet-121 is used
to initialize the parameters of the three branches. The three
branches were trained simultaneously, and the losses are
added weighted by 0.5, 1, 0.5. In the stage of generating
fake images, we randomly initialize a 100 dimensional vector
as inputs, the value of each neuron ranges in [-1, 1]. For
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VeRi dataset, all achieved images are selected as fake inputs.
While for the VehicleID dataset, we only randomly select
50,000 images.

3.2. Evaluation of Vehicle Re-ID

We compare our methods with the state-of-the-art in Table
2 and Table 3. Table 2 illustrates the mAP and rank-1 of
different methods on VeRi dataset, where we achieve mAP=
65.13% and rank1=91.24%. Table 3 shows rank-1, rank-5
match rate and mAP compared with other methods on Vehi-
cleID dataset. All those methods listed in Table 3 adopt the
same strategy in [2] to split probe/gallery for testing sets of
three scales. We can find that our approach achieves supe-
rior performance over other state-of-the art methods on all
test sets.

The experimental results indicate that our proposed
framework exceeds the latest methods by 3.81% in mAP
and 5.32% in rank-1 in VeRi dataset, and exceeds them by
0.7%∼1.8% on rank-1 in different scaled test set of Vehi-
cleID dataset. This owes to that the extracted features contain
information of multiple scales, and the data augmentation in
semi-supervised training stage prevent over-fitting effectively.

Table 2. Comparison with state-of-the-art vehicle re-id meth-
ods on VeRi dataset.

Method mAP(%) rank-1(%)
LOMO[12] 9.64 25.3

BOW-CN[13] 12.20 33.9
PROVID[1] 22.77 61.4

KEPLER[14] 33.53 68.7
SiameseCNN+PathLSTM[15] 58.27 83.49

VAMI[6] 61.32 85.92
Ours 65.13 91.24

Table 3. Comparison with state-of-the-art vehicle re-id meth-
ods on VehicleID dataset.

Method Match rate K=800 K=1600 K=2400
VGG+Triplet Loss[16]

rank-1(%)

40.4 35.4 31.9
Mixed Diff+CLL[2] 49.0 42.8 38.2

DJDL[5] 72.3 70.8 68.0
Ours 75.1 71.8 68.7

VGG+Triplet Loss

rank-5(%)

61.7 54.6 50.3
Mixed Diff+CLL 73.5 66.8 61.6

DJDL 85.7 81.8 78.9
Ours 89.7 86.1 83.1

VGG+Triplet Loss

mAP(%)

44.4 39.1 37.3
Mixed Diff+CLL 54.6 48.1 45.5

DJDL 78.6 74.7 72.0
Ours 79.3 75.4 73.3

3.3. Ablation Studies

3.3.1. Comparison with other semi-supervised methods.

We compare our proposed SLSR with “all in one”, “pseudo-
label” and “LSRO” methods, as shown in Table 4. During ex-

Table 4. Comparison of “All in one”, “pseudo label”,
“LSRO” and our proposed SLSR on VeRi dataset.

Method mAP(%) rank1(%)
all in one[17] —- —-
pseudo-label 54.90 85.70

LSRO 56.28 87.31
Ours 57.82 88.49

periments, the network is always hard to convergence when
all fake images are set the same label, is discribed in ”all in
one” method. Our proposed SLSR strategy achieves the high-
est score when ε is set to 0.1. Note that this set of experiments
is carried out based on the baseline.

3.3.2. Contribution of adding different strategies

Table 5 shows the mAP and rank-1 after adding different
strategies. Compared with the baseline, our proposed multi-
scale framework with SLSR increases mAP by 8.85% and
rank-1 by 3.93%. Baseline refers to training real images us-
ing DenseNet-121 with hard example mining strategy. The
training of our proposed strategy could be divided into four
stages. The entries beginning with “+” indicate training from
the intermediate result of last step. We gradually add Sub-
Net1 and SubNet2, which are described in Section 2.1, and
put the fake images into training. We do not use any unmen-
tioned strategies to ensure the fairness of the comparative
experiments.

Table 5. Our results with different strategies on VeRi dataset.
Strategy mAP(%) rank-1(%)
Baseline 56.28 87.31

+SubNet1 60.01 88.64
+SubNet2 61.88 90.01

+Fake images 65.13 91.24

4. CONCLUSION

In this paper, a multi-scale vehicle re-id framework with
SLSR is proposed. It contains a multi-scale structure with
dense connections, which can alleviate the influence of scale
variations by learning and integrating discriminative features
from inputs of different scales. And it generates unsupervised
samples using DCGAN for data augmentation. Meanwhile,
SLSR is utilized to deal with the imbalanced data distribution
and enhance the network generalization. Extensive exper-
iments validate the effectiveness of each contribution and
demonstrate the excellent performance of our method com-
pared with other state-of-the-art approaches. In future work,
we will further explore semi-supervised learning to improve
vehicle re-id.
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[4] Jakub Sochor, Jakub Špaňhel, and Adam Herout, “Box-
cars: Improving fine-grained recognition of vehicles us-
ing 3-d bounding boxes in traffic surveillance,” IEEE
Transactions on Intelligent Transportation Systems,
2018.

[5] Yuqi Li, Yanghao Li, Hongfei Yan, and Jiaying Liu,
“Deep joint discriminative learning for vehicle re-
identification and retrieval,” in Image Processing
(ICIP), 2017 IEEE International Conference on. IEEE,
2017, pp. 395–399.

[6] Yi Zhou and Ling Shao, “Aware attentive multi-view
inference for vehicle re-identification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6489–6498.

[7] Na Jiang, Yue Xu, Zhong Zhou, and Wei Wu, “Multi-
attribute driven vehicle re-identification with spatial-
temporal re-ranking,” in 2018 25th IEEE International
Conference on Image Processing (ICIP). IEEE, 2018,
pp. 858–862.

[8] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna, “Rethinking the in-
ception architecture for computer vision,” in Proceed-
ings of the IEEE conference on computer vision and pat-
tern recognition, 2016, pp. 2818–2826.

[9] Dong-Hyun Lee, “Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural
networks,” in Workshop on Challenges in Representa-
tion Learning, ICML, 2013, vol. 3, p. 2.

[10] Zhedong Zheng, Liang Zheng, and Yi Yang, “Un-
labeled samples generated by gan improve the per-
son re-identification baseline in vitro,” arXiv preprint
arXiv:1701.07717, vol. 3, 2017.

[11] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell, “Caffe: Convolutional ar-
chitecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[12] Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z Li,
“Person re-identification by local maximal occurrence
representation and metric learning,” in Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2015, pp. 2197–2206.

[13] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang,
Jingdong Wang, and Qi Tian, “Scalable person re-
identification: A benchmark,” in Proceedings of the
IEEE International Conference on Computer Vision,
2015, pp. 1116–1124.

[14] Niki Martinel, Christian Micheloni, and Gian Luca
Foresti, “Kernelized saliency-based person re-
identification through multiple metric learning,” IEEE
Transactions on Image Processing, vol. 24, no. 12, pp.
5645–5658, 2015.

[15] Yantao Shen, Tong Xiao, Hongsheng Li, Shuai Yi, and
Xiaogang Wang, “Learning deep neural networks for
vehicle re-id with visual-spatio-temporal path propos-
als,” in 2017 IEEE International Conference on Com-
puter Vision (ICCV). IEEE, 2017, pp. 1918–1927.

[16] Shengyong Ding, Liang Lin, Guangrun Wang, and
Hongyang Chao, “Deep feature learning with relative
distance comparison for person re-identification,” Pat-
tern Recognition, vol. 48, no. 10, pp. 2993–3003, 2015.

[17] Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen, “Improved
techniques for training gans,” in Advances in Neural
Information Processing Systems, 2016, pp. 2234–2242.

2121


		2019-03-18T11:01:08-0500
	Preflight Ticket Signature




