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ABSTRACT
In this paper, we propose a novel unsupervised feature se-
lection method, which is to minimize the data reconstruction
error between each sample and a linear combination of its
neighbors. Different from the conventional reconstruction-
based feature selection method, we impose a nonnegative or-
thogonal constraint on the reconstruction weight matrix, so
that an ideal neighbor assignment is adaptively captured. To
enhance the robustness of the residual term and select the
most valuable features, `2,1-norm is applied to both recon-
struction error term and feature selection matrix. At last,
we derive an iterative algorithm to effectively solve the pro-
posed objective function, and perform extensive experiments
on four benchmark datasets to validate the effectiveness of the
proposed method.

Index Terms— data reconstruction error, nonnegative or-
thogonal constraint, robustness, feature selection.

1. INTRODUCTION

With the development of technology, we can easily get a
mass of data. However, the obtained data are often high-
dimensional, contain many noise features, and could not be
used directly. To select the most valuable features and ac-
celerate data processing, feature selection has attracted much
attention in recent years, and is widely researched in many
different domains such as selecting the disease genes in med-
ical research [1], image processing in computer vision [2],
and data extraction in machine learning [3]. According to
using label information or not, feature selection methods
are classified into three different types: namely supervised
feature selection [4], semi-supervised feature selection [5]
and unsupervised feature selection [6]. Without using any

Feiping Nie, Sheng Yang and Rui Zhang are with School
of Computer Science and Center for OPTical IMagery Analysis
and Learning (OPTIMAL), Northwestern Polytechnical University,
Xi’an 710072, Shaanxi, P. R. China (email: feipingnie@gmail.com;
1637789668@qq.com;ruizhang8633@gmail.com).

Xuelong Li is with the Center for OPTical IMagery Analysis and Learn-
ing (OPTIMAL), State Key Laboratory of Transient Optics and Photonics,
Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sci-
ences, Xi’an 710119, Shaanxi, P. R. China (xuelong li@opt.ac.cn).

reconstruction

Fig. 1: Sample xi is reconstructed by a linear combination of
all other samples (left), and sample xi can be automatically
reconstructed by only a few important neighbors (right)

label information, unsupervised feature selection becomes
more difficult and challenging, but it is much more useful in
practice and can spare a large amount of human-labor.

In recent years, data reconstruction error has become a
new criterion for feature selection. For example, zhao et al.
[7] proposes a graph regularized feature selection with data
reconstruction, where the selected features not only can pre-
serve the local structure of the original data via graph regular-
ization, but also can reconstruct each data point via a linear
combination of its neighbors. In [8], it proposes a framework
for unsupervised feature selection, which embeds the recon-
struction function learning process into feature selection. This
method is a greedy search way to select the features, and the
finally selected features may not be optimal.

In this paper, we propose a novel unsupervised feature se-
lection method based on reconstruction error minimization
(REM-FS). Different from other reconstruction-based feature
selection method, the proposed method can perform the learn-
ing of reconstruction error function ( using a few ideal neigh-
bors to reconstruct each sample without any additional pa-
rameters) and feature selection simultaneously. To enhance
the robustness of reconstruction error term and pick out the
discriminative features, we apply the `2,1-norm to both re-
construction error term and feature selection matrix (i.e. pro-
jection matrix). More importantly, a nonnegative orthogonal
constraint is imposed on the reconstruction weight matrix,
such that each sample is reconstructed by only a few ideal
neighbors as the right part of Figure 1, rather than being re-
constructed by a linear combination of all the samples as the
left part of Figure 1.
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2. THE PROPOSED ROBUST RECONSTRUCTION
MODEL

Given data matrix X = [x1,x2, ...,xn] ∈ Rd×n, d is the
number of features, and n is the number of samples. If each
sample xi is reconstructed by a linear combination of other
samples, we have the following reconstruction model:

min
V

n∑
i=1

∥∥∥∥∥∥xi −
n∑
j=1

vijxj

∥∥∥∥∥∥
2

2

(1)

where V ∈ Rn×n is the reconstruction weight matrix, which
measures the contribution of j-th sample to the reconstruction
of i-th sample. Besides, to guarantee the probability distribu-
tion, each row of matrix V is constrained with

∑
j vij = 1.

In practice, the obtained data usually contain many noises.
However, the model in problem (1) is sensitive to the large
data outliers, because of the square of reconstruction error.
If there is a large deviated value, it will be dominant and
severely decrease the performance of the model. To enhance
the robustness of the model in (1), it is rewritten as

min
V

n∑
i=1

∥∥∥∥∥∥xi −
n∑
j=1

vijxj

∥∥∥∥∥∥
2

(2)

where the square of reconstruction error is removed, and the
model in (2) becomes robust to the noises. Furthermore,
there is an implicit weight defined in problem (2), and we can
rewrite it as

min
V

n∑
i=1

di

∥∥∥∥∥∥xi −
n∑
j=1

vijxj

∥∥∥∥∥∥
2

2

(3)

where di = 1

/
2

∥∥∥∥∥xi − n∑
j=1

vijxj

∥∥∥∥∥
2

is an adaptive weight to

measure the importance of data reconstruction. That is to say,
if the data reconstruction error is large, di will be small, and
if the data reconstruction error is small, di will be large. Next,
for brevity, we rewrite problem (2) into the matrix form as

min
VT 1n=1n,V≥0

‖X−XV‖2,1 (4)

where V ∈ Rn×n is constrained with VT1n = 1n (the sum
of each column is one), and V ≥ 0 (every element is guaran-
teed to be nonnegative). This constraint for matrix V is the
same as the constraint in problem (1).

Usually, a sample xi is not necessary to be reconstructed
by a linear combination of all other samples as the left part in
Figure 1, and we really expect that a sample is reconstructed
by only a few important neighbors as the right part in Figure
1. An intuitive idea is that we can select the k nearest neigh-
bors to reconstruct each sample. If do in this way, the model

will involve another variable k, which needs to tune manually.
Here, we adopt an easy and elegant way to achieve this moti-
vation without any additional parameter, and rewrite problem
(4) as

min
VTV=In,V≥0

‖X−XV‖2,1 (5)

where we use the nonnegative orthogonal constraint VTV = In
on the reconstruction weight matrix V, rather than using
the original constraint VT1n = 1n. This nonnegative or-
thogonal constraint has the following merits: (1) the con-
straint VTV = In is not involved with any other parame-
ter. (2) the constraint VTV = In indicates that the square
sum of each column is added up to one, namely we have
vT1 v1 = 1,vT2 v2 = 1, ...,vTnvn = 1. In this way, the small
values of matrix V will be forced to closely be zero, and
the large values of matrix V (having major contribution to
reconstruct the samples) will be focused.

3. RECONSTRUCTION-BASED MODEL FOR
FEATURE SELECTION

For the purpose of performing feature selection, according to
the reconstruction model in problem (5), we propose the fol-
lowing objective function for the proposed REM-FS method.

min
WTW=Im,VTV=In,V≥0

∥∥WTX−WTXV
∥∥
2,1

+λ‖W‖2,1
(6)

where W ∈ Rd×m is the projection matrix to project high-
dimensional data to a low subspace (real-world data are often
high-dimensional, and we need to map them into the low di-
mensions), and V ∈ Rn×n is a nonnegative orthogonal matrix
to measure the contribution of ideal neighbors to reconstruct
each sample. The first term of problem (6) denotes the recon-
struction error between each sample and a linear combination
of its neighbors after projection. The second regularization
term is to force the projection matrix W to be row sparse for
feature selection (selecting the genuinely useful features as
in [9]). λ > 0 is a regularization parameter to balance the
first term and the second term.

4. OPTIMIZATION ALGORITHM

To effectively solve problem (6), motivated by reweighted
method in [9], it is converted into the following problem

min
∥∥∥(WTX−WTXV

)
D

1
2

∥∥∥2
F
+ λTr

(
WTQW

)
s.t.WTW = Im,V

TV = In,V ≥ 0
(7)

where D ∈ Rn×n is a diagonal matrix with i-th element as
Dii =

1
2‖WTxi−WTXvi‖2

, and Q ∈ Rd×d is also a diagonal

matrix with i-th element as Qii =
1

2
√
‖wi‖22+ε

, where ε is a

very small constant to avoid the denominator being zero.
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Solving problem (7) is still challenging, because it con-
tains two variables W and V simultaneously. We will solve
this problem by alternatively optimizing variables W and V,
respectively.
Fix V, update W: With V fixed, problem (7) becomes

min
WTW=Im

Tr
(
WTAW

)
+ λTr

(
WTQW

)
(8)

where A = X (In −V)D(In −V)
T
XT and by using the

property of trace, it is written as

min
WTW=Im

Tr
(
WT (A + λQ)W

)
(9)

Problem (9) has already been solved in spectral clustering
[10], and we can know that the optimal solution of W is
formed by the m eigenvectors of (A + λQ) corresponding
to m smallest eigenvalues.
Fix W, update V: When W is fixed, problem (7) becomes

minTr
(
XTWWTXVDVT

)
− 2Tr

(
XTWWTXDVT

)
s.t. VTV = In,V ≥ 0

(10)
However, this problem is very difficult to solve directly, be-
cause it involves the nonnegative orthogonal constraint. To
tackle this problem, it is relaxed into the following form

min
V≥0

Tr
(
XTWWTXVDVT

)
− 2Tr

(
XTWWTXDVT

)
+γ

2

∥∥VTV − In
∥∥2
F

(11)
where γ is a parameter to control the orthogonality. When
γ → ∞, the orthogonality will be satisfied. The Lagrangian
function of problem (11) is as follows

min
V

Tr
(
XTWWTXVDVT

)
− 2Tr

(
XTWWTXDVT

)
+γ

2

∥∥VTV − In
∥∥2
F
+ Tr

(
ΛVT

)
(12)

where Λ is the Lagrangian multiplier, and problem (12) is
now free from any constraint. Taking the derivative of prob-
lem (12) with respect to V and using Karush-Kunh-Tucker
(KKT) condition Λ ◦ V=0, we get the following updating
rule

Vij = Vij

(γV)ij
(XTWWTXVD−XTWWTXD + γVVTV)ij

(13)
Based on the above analysis, we summarize the whole proce-
dure for solving problem (6) in Algorithm 1.

5. EXPERIMENT

5.1. Benchmark Datasets and Competitors

In this section, to validate the performance of the proposed
REM-FS method, we conduct extensive experiments on four

Algorithm 1 Algorithm for the proposed REM-FS method.
Input: Data matrix X ∈ Rd×n, the parameter λ, a large
enough number γ and the selected feature number t.
Initialize: The matrix W ∈ Rd×m, V ∈ Rn×n, diagonal
matrices D ∈ Rn×n and Q ∈ Rd×d.

while not converge do
1. Update W by solving problem (9), which is formed
by the m eigenvectors of (A + λQ) corresponding to m
smallest eigenvalues.
2. Update V via Eq. (13).
3. Update diagonal matrices D and Q, respectively.

end while
Output: Obtain optimal matrix W and calculate each∥∥wi

∥∥
2
, i = 1, 2, ...d, then sort in descending order and

select top ranking t features.

benchmark datasets including: the Japanese Female Facial
Expression (JAFFE) dataset [11], which contains 213 images
of 7 facial expressions posed by 10 Japanese female models;
the ORL dataset [12] has 40 different classes, and each class
has 10 samples; the Lung Discrete (LUNGD) dataset [13]
is a gene expression microarray dataset, which has 73 sam-
ples belonging to 7 different classes; the last one is the Yale
dataset [14], which contains 165 images selecting from 15
different persons, and every person has 11 different images.

In addition, seven state-of-the-art unsupervised feature se-
lection methods are compared with the proposed method in-
cluding: Laplacian Score (LapScore) [15], MCFS [16], SPEC
[17] , LLCFS [18] , UDFS [19], JELSR [20] and RUFS [3].

5.2. Performance on Benchmark Datasets

As a convention in [3, 19], we use k-means to perform the
clustering task, and record the average results (repeating 20
times). Clustering accuracy (Acc) and Normalized Mutual
Information (NMI) [21] are as the basic evaluation metrics
to measure the performance of different feature selection
methods. As for regularization parameter λ in problem
(6), the optimal parameter is selected at the candidate set{
10−3, 10−2, 10−1, 1, 10, 102, 103

}
, and parameter γ is to

control the orthogonality, which should be a large enough
number and fixed as 104 in the experiment. The cluster-
ing accuracy and NMI with different number of features are
shown in Figure 2, where the red line denotes the proposed
REM-FS method. Generally speaking, the performance of
proposed REM-FS first increases as the feature number size
becomes large, then its performance falls down slightly. This
is because more features can provide more information at the
beginning, but if the feature number increases excessively,
some noise features will be brought into the selected fea-
ture subset, and deteriorate the performance of the proposed
method. To take a further analysis, we show the clustering
accuracy and NMI on top 200 features in Table 1, where
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Fig. 2: Clustering accuracy (top) and NMI (bottom) with different number of selected features

Table 1: Clustering accuracy (left) and NMI (right) on top 200 features.

Methods JAFFE ORL LUNGD YALE JAFFE ORL LUNGD YALE

LapScore 0.8345 0.4938 0.7479 0.4364 0.8621 0.7055 0.6991 0.4920
MCFS 0.7993 0.5364 0.7932 0.4100 0.8346 0.7377 0.7228 0.4675
SPEC 0.7296 0.4454 0.7514 0.3691 0.7371 0.6573 0.6738 0.4375
LLCFS 0.7777 0.4955 0.6808 0.3712 0.7914 0.7033 0.6542 0.4343
UDFS 0.8300 0.4875 0.7103 0.3545 0.8482 0.6838 0.6561 0.4116
JELSR 0.7434 0.5026 0.7233 0.3482 0.7529 0.7045 0.6751 0.4160
RUFS 0.7730 0.5265 0.7801 0.3597 0.8056 0.7232 0.7125 0.4262
REM-FS(our) 0.8967 0.5455 0.8082 0.4545 0.8811 0.7459 0.7315 0.5210

best results are in bold face and the second-best results are
underlined. From Table 1, we conclude that the proposed
REM-FS obtains the satisfactory performance and outper-
forms other seven compared methods. The distinct merit of
REM-FS compared with other seven compared methods is
that (1) a few ideal neighbors can be automatically captured
by using nonnegative orthogonal constraint without involving
any additional parameter. (2) In addition, the projection ma-
trix W serves as a bridge to make the sample reconstruction
and feature selection perform simultaneously. (3) By using
`2,1-norm, the reconstruction term becomes more robust, and
projection matrix becomes row sparse such that the valuable
features can be selected.

6. CONCLUSION

In this paper, we propose a novel unsupervised feature se-
lection method ( REM-FS) based on the reconstruction er-

ror minimization. We impose a nonnegative orthogonal con-
straint on the reconstruction weight matrix, such that having
major contribution of neighbors will be focused and ignor-
ing little contribution of neighbors (forcing small elements in
matrix V to closely be zero) without involving any additional
parameter. To reduce the impacts of large data outliers and
select the valuable features, `2,1-norm is applied for the resid-
ual term to enhance the robustness, and the projection matrix
to be row sparse for feature selection. At last, we derive an
iterative optimization algorithm to solve the objective func-
tion, and perform extensive experiments on four benchmark
datasets to prove the effectiveness of the proposed method.
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