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ABSTRACT
Visual relationship recognition, as a challenging task used to
distinguish the interactions between object pairs, has received
much attention recently. Considering the fact that most vi-
sual relationships are semantic concepts defined by human
beings, there are many human knowledge, or priors, hidden in
them, which haven’t been fully exploited by existing methods.
In this work, we propose a novel visual relationship recog-
nition model using language and position guided attention:
language and position information are exploited and vectored
firstly, and then both of them are used to guide the generation
of attention maps. With the guided attention, the hidden hu-
man knowledge can be made better use to enhance the selec-
tion of spatial and channel features. Experiments on VRD [2]
and VGR [1] show that, with language and position guided at-
tention module, our proposed model achieves state-of-the-art
performance.

Index Terms— Visual Relationship Recognition, Visual
Attention, Deep Neutral Networks

1. INTRODUCTION

Visual relationship recognition is a key problem in image cap-
tion and image understanding. Given one image, traditional
visual models only tell us the categories and positions of ob-
jects. For humans, we not only recognize objects but also
catch the deep semantic information, especially the interac-
tion of object pairs. Visual relationship recognition attempts
to distinguish the different interactions of object pairs.

Generally, visual relationships can be expressed as triplets
〈sub− pred− ob〉 briefly, where sub, pred and ob mean sub-
ject, predicate and object respectively. Based on the triplets
expression, Lu et al.[2] evaluates visual relationship task in
three conditions, including predicate detection, phrase detec-
tion and relationship detection. The most challenging and

This work was partly funded by NSFC (No.61571297), the National
Key Research and Development Program (2017YFB1002400), and STCSM
(18DZ2270700, 18DZ1112300).

critical task in three conditions is the predictions of inter-
actions of object pairs. Our work mainly focuses on distin-
guishing the interactions given the object pairs, which is most
similar to the predicate detection task in [1].

Recently, the basic method [2] takes union regions of
subject and object as inputs and adds language priors to pre-
serve alignments with human perception. Visual features can-
not distinguish complicate interactions of object pairs well.
Inspired by many visual attention works [3, 4, 5, 6, 7, 8, 9],
we believe visual attention module is beneficial to distinguish
the variety of relationships within visual features. For hu-
man beings, we pay more attention to some specific areas in
one image. With generated attention masks, visual attention
module enhances the interest regions and suppresses the rest
regions. However, most of these existing attention-based
image recognition methods, use only visual features to learn
the attention maps; the human knowledge, or priors, hidden
in these human-defined relationship concepts, have not been
fully exploited. Noteworthy, in some previous works, lan-
guage [2, 10] and position [11, 10, 12] are also added into
relation model. These previous models got combined features
by concatenating visual features and other types of features
directly, which means that the correlation and dependency
between different modal features are ignored or exploited
insufficiently.

In this work, rather than regarding position and language
information as inputs equivalent to visual features, we ex-
ploit them generating attention masks as priors to guide the
visual relationship recognition. Different from [6] gener-
ating attention masks only with visual features, language
and position information are utilized as attention weights
to guide visual attention generation, which called Language
and Position Guided Attention module (LPGA). The intu-
itive motivation is that language and position information
can provide specific clues to infer attention areas in relation-
ships. For example, given an image, the position information,
”upper and lower”, guides the relation model to pay more
attention to the object union region, and the language infor-
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Fig. 1. Architecture of our proposed visual relation model.

mation, ”person−bike”, may enhance the region near person
feet and hands. Further, we think different predicates should
have their own attention masks. For example, for ”carry” and
”ride”, generated attention masks should be different even
using the same language information (e.g., person − bike).
Similarly, attention masks are different using similar position
information. Thus, our LPGA module generates more accu-
rate attention masks for each predicate with language and
position information.

To summarize, the main contribution is that we propose
a novel LPGA module, where language and position infor-
mation are exploited to guide the generation of more efficient
attention maps. With guided attention, hidden human knowl-
edge can be made better use to enhance the selection of spa-
tial and channel features. With the LPGA module, our model
achieves the state-of-the-art performances on Visual Relation-
ship Dataset [2], and keeps consistent performances on Visual
Genome [1].

2. LANGUAGE AND POSITION GUIDED
ATTENTION

2.1. Framework

In visual relationship recognition, object regions and the
union region play different roles in relation models. Object
regions catch more dedicated object features, and the union
region mainly denotes the interactive features. In this work,
we attempt to combine both the union region and object
regions into rear networks.

The framework of our proposed model is shown in Fig.1.
Firstly, given one image, we use a pre-trained object detection
model to get the object regions, categories and their bound-
ing boxes. In this paper, we only focus on distinguishing
predicates, so object categories and their bounding boxes
are regarded ground truth in the latter model. In the relation
model, we use VGG-16 network [13], shared with object de-
tection model, as a backbone to extract visual features, and
remove the pooling layer after Conv5 3 in the VGG-16 net-
work. The visual features denoted F extracted from Conv5 3
are fed into three branches. One branch applies max pooling

operation on F ; two branches apply RoIAlign pooling [14]
on F according to the bounding boxes of object pairs respec-
tively. Then two convolutional layers are added following
pooling layers to extract visual features. Finally, concatena-
tion operation is applied to get Fconcat which are fed into the
latter LPGA module.

2.2. Vectorizating Representation of Language and Posi-
tion

We represent the language information through concatenat-
ing the word2vec [15] embedding of object pairs, which are
mapped into 300 dims each word. Then, L2-normalization is
applied to each word2vec embedding. The language repre-
sentations Rl(sub, ob) ∈ Rm are encoded as:

Rl(sub, ob) = wl[w2vec(lsub), w2vec(lob)] + bl, (1)

where sub (ob) means subject (object), l∗ are the text words of
objects, and wl ∈ Rm×600, bl ∈ Rm are learnable weights.

The coordinates of two bounding boxes are represented
as [xs, ys, ws, hs] and [xo, yo, wo, ho], where (x, y), (w, h)
are the coordinates of the upper left corner, the width and
height of the bounding box. Same with [16], position
representations contain the respective position informa-
tion and their mutual position information. Given a sin-
gle bounding box, the respective position information is
represented as [ x

Wu
, y
Hu

, x+w
Wu

, y+h
Hu

, S
Su

], where Wu, Hu

and Su are the width, height and area of the union re-
gion. The mutual position information is represented as
[xs−xo

wo
, ys−yo

ho
, log ws

wo
, log hs

ho
]. Then, L2-normalization is

applied on the position representation vector, which de-
notes as P (psub, pob) ∈ R14. The position representations
Rp(sub, ob) ∈ Rn are encoded as:

Rp(sub, ob) = wpP (psub, pob) + bp, (2)

where p∗ are the coordinates of bounding boxes, and wp ∈
Rn×14, bp ∈ Rn are also learnable weights.

We observe that kinds of predicates focus on different
image regions. Thus, we set different classifiers Ci

pred for
each predicate. In different classifiers, attention module
guided by language and position representations is added
following Fconcat. In our paper, spatial and channel atten-
tion are applied separately to decrease model parameters.
Spatial attention module generates spatial attention masks
fusing visual features and position representations, and chan-
nel attention module generates masks fusing language and
position representations. The reasons for different pieces of
information fusion are mainly two: 1) it can decrease model
parameters; 2) language information is not suitable for gen-
erating spatial attention masks comparing to visual features
and position information.
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Fig. 2. The detail structure of LPGA module, left box is the spatial attention, right box is the channel attention. ⊗ denotes
transform operation, � and ⊕ denote the element-wise product and sum.

2.3. Position Guided Spatial Attention

Spatial attention module directs the attention in each pixel.
Inspired by [6], our spatial attention module is split into two
branches. Shown in the left box of Fig.2, one branch is a trunk
of convolutional layers to extract visual features, and another
one is a bottom-up top-down convolutional structure to gen-
erate spatial soft masks. Different from previous methods [6]
only using visual features, the spatial mask for ith predicates
classifier in our paper is the combination of visual features
and position representations as below:

M i
spa(sub, ob) =

(
V i
spRp

)
� ΣchannelFM , (3)

where V i
sp ∈ Rw×h×n denotes the position projection ma-

trix transforming the position representations vector to 2-
D attention mask for the ith predicate classifier. FM ∈
Rchannel×w×h is the visual spatial mask generated by visual
features. � is the element-wise multiplication. Finally, nor-
malization and duplication operations are applied to generate
the final spatial mask M̃ i

spa ∈ Rchannel×w×h.

2.4. Language and Position Guided Channel Attention

Channel attention module directs the attention in each chan-
nel. In our paper, the channel mask is generated using po-
sition and language representations. Similar with spatial at-
tention module, channel attention module is trained with two
matrices, vi

cl ∈ Rchannel×m, vi
cp ∈ Rchannel×n denoting the

language projection matrix and position projection matrix in
channel attention for the ith classifier. First, we combine lan-
guage representations and position representations:

M i
cha(sub, ob) = vi

clRl (sub, ob) + vi
cpRp (sub, ob) . (4)

Then normalization operation are applied on M i
cha ∈

Rchannel to generate the final channel mask M̃ i
cha ∈ Rchannel

for the ith predicate.
Finally, the output of the LPGA module for the ith classi-

fier is as below:

Ci
pred = wi

f

[
M̃ i

cha � Σw,h

(
M̃ i

spa � FT

)]
+ bif , (5)

where wi
f ∈ R1×channel and bif ∈ R are the weights and

bias term to produce final prediction Ci
pred, FT are the feature

maps generated by Fconcat with two convolutional layers.
The final loss function is shown below:

L = − 1

N

N∑
k=1

∆
(
ykpred, Cpred(xk)

)
, (6)

where ∆ is the softmax loss, yk is the label of the kth input,
and N is the number of the mini-batch.

3. EXPERIMENTS

During the training stage, the learning rates are set to 0.01 in
the rear relation layers, which are decayed by 0.3 every 15
epochs. To accelerate the convergence of training, Adam [17]
is applied to optimize our relation model.

Because annotations of visual relationship are not exhaus-
tive, mAP evaluation metrics will penalize positive predic-
tions which are absent in ground truth. We follow [2] to use
Recall@50 (R@50) and Recall@100 (R@100) as our evalu-
ation metrics. R@n computes the Recall using the top n pre-
dictions in one image. Following [10], we also set a hyper-
parameter k, which means to take the top k predictions into
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Table 1. Evaluation on VRD testing set. ”Entire set” contains
the whole testing set. ”Zero-shot set” only contains triplets
which are not in the training set. ”spatial attention” / ”channel
attention” only contains spatial / channel attention module.
”LR”/ ”PR” only uses language / position representations.

Entire set Zero-shot set
Model R@100/50 R@100 R@50 R@100/50 R@100 R@50

k=1 k=70 k=70 k=1 k=70 k=70

Visual Phr [18] 1.91 - - - - -
Joint CNN [13] 2.03 - - - - -
VTransE [11] 44.76 - - - - -

Language-Pri [2] 47.87 84.34 70.97 8.45 50.04 29.77
TCIR [16] 53.59 - - 16.42 - -

Weakly-sup [19] 52.6 - - 23.6 - -
DR-Net [12] - 81.90 80.78 - - -

LKD [10] 55.16 94.65 85.64 16.98 74.65 54.20
Zoom-Net [20] 55.98 94.56 89.03 - - -

baseline 18.13 78.06 58.63 7.44 62.45 39.09
spatial attention 42.54 90.39 80.30 19.16 82.98 65.27
channel attention 55.70 96.41 90.65 22.33 86.57 71.26

LR 55.64 96.40 89.80 22.16 85.03 68.69
PR 45.26 92.34 82.95 23.61 83.75 69.12

Final Model 56.60 96.66 90.39 26.52 86.66 72.63

consideration per object pair. In visual relationship recog-
nition, R@n,k=1 is equivalent to R@n in [2]. R@n,k=70
in VRD and R@n,k=130 in VGR are equivalent to take all
predicates into consideration.

3.1. Experiments on Visual Relationship Dataset

In this section, we evaluate our model in Visual Relationship
Dataset [2], which contains 70 predicates and 100 objects. We
compare our model with some related methods [2, 18, 13, 11,
16, 10, 19, 12, 20]. Table 1 shows the results. To investigate
different settings’ influences on our proposed model, we list
the performances of combinations of different components.

We explore the respective influence of language and po-
sition information in the LPGA module. ”Final Model” out-
performs single ”LR” or ”PR”. It proves that language and
position information are complementary in the LPGA mod-
ule. ”PR” performs better in the zero-shot set than in the en-
tire set, which indicates position information provides more
powerful and explicit inferring in unseen relationships. We
also add more ablation analysis to our attention module. With
a single spatial or channel attention module, the model makes
great gains compared to the baseline model. While channel
attention performs relatively well, the final model still gets
more gains combining spatial attention, especially in the zero-
shot set. Further, while ”LKD” also combines language and
position information with the external knowledge, our pro-
posed model outperforms ”LKD” in all evaluation metrics,
which proves language and position information are better ex-
ploited as attention weights in our attention module. Finally,
our proposed model with the complete LPGA module (”Fi-
nal Model”) reaches best results, especially in the zero-shot
set. The visualization of some results on VRD can be seen in
Fig.3.

Fig. 3. Visualization of some results on VRD. Images are
union regions of object pairs. The top rows above images are
ground truths. Green boxes correspond to subjects, and red
boxes correspond to objects. We list the top four predictions
per object pair, where yellow indicates the positive prediction.

3.2. Experiments on Visual Genome Relationship Dataset

We also evaluate our model in Visual Genome-based Rela-
tionship (VGR). Visual Genome is a large-scale dataset and
is annotated with much noise. We construct a clean subset
VGR, which contains 130 predicates and 200 objects. There
are 75697 images in the training set, and 32552 images in the
testing set. The results are shown in Table 2.

Table 2. Evaluation on Visual Genome Relationship Dataset.
Entire set Zero-shot set

Model R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50
k=1 k=1 k=130 k=130 k=1 k=1 k=130 k=130

baseline 38.24 38.10 86.02 74.26 13.08 13.07 50.10 35.55
LR 74.58 74.34 96.21 92.27 15.76 15.74 69.38 51.89
PR 59.45 59.24 91.50 84.97 17.18 17.18 61.02 46.97

Final Model 75.00 74.76 96.13 92.34 18.52 18.51 70.69 55.48

From Table 2, we can see the final model achieves better
results comparing to ”LR” and ”PR”. It proves that the fusion
of language and position information as attention weights in
LPGA module can boost the performances of relation model,
which is consistent with the results in VRD.

4. CONCLUSIONS

In this work, we propose a novel visual relationship recog-
nition model using language and position guided attention:
language and position information are exploited to guide the
generation of more accurate attention maps, and thus the se-
lection efficiency of spatial and channel features can be in-
creased. Experiments on VRD and VGR show that, with
language and position guided attention module, our proposed
model achieves state-of-the-art performance.
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