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ABSTRACT 
 
We investigate the high-dimensional data clustering problem 
by proposing a novel and unsupervised representation learning 
model called Robust Flexible Auto-weighted Local-coordinate 
Concept Factorization (RFA-LCF). RFA-LCF integrates the 
robust flexible CF, robust sparse local-coordinate coding and 
the adaptive reconstruction weighting learning into a unified 
model. The adaptive weighting is driven by including the joint 
manifold preserving constraints on the recovered clean data, 
basis concepts and new representation. Specifically, our RFA-
LCF uses a L2,1-norm based flexible residue to encode the 
mismatch between clean data and its reconstruction, and also 
applies the robust adaptive sparse local-coordinate coding to 
represent the data using a few nearby basis concepts, which can 
make the factorization more accurate and robust to noise. The 
robust flexible factorization is also performed in the recovered 
clean data space for enhancing representations. RFA-LCF also 
considers preserving the local manifold structures of clean data 
space, basis concept space and the new coordinate space jointly 
in an adaptive manner way. Extensive comparisons show that 
RFA-LCF can deliver enhanced clustering results.  
 
Index Terms— Robust flexible auto-weighted local-coordinate 
concept factorization, auto-weighted learning, data clustering, 
sparse local coordinate coding 

 
1. INTRODUCTION 

 
In recent decades, lots of effective matrix factorization based 
models have been proposed for data presentation [1][34-35], of 
which Singular Value Decomposition (SVD) [5], Nonnegative 
Matrix Factorization (NMF) [8], Vector quantization (VQ) [6], 
and Concept Factorization (CF) [24] are several representative 
methods [32]. Among these factorization methods, NMF and 
CF differ from the others since they imposes the nonnegative 
constraints on the factorization matrices explicitly.  

Due to the additive nonnegative constraints, both NMF and 
its variants, for instance Projective NMF (PNMF) [28], Graph 
Regularized NMF (GNMF) [2], Constrained NMF (CNMF) 
[10], Dual-graph Sparse NMF (DSNMF) [13], Graph dual 
regularization NMF (DNMF) [18], and Parameter-less Auto-
weighted Multiple GNMF (PAMGNMF) [19] are widely used 
for learning parts-based representation for representing and 
clustering data. But NMF and variants cannot deal with data in 
kernel space directly. To handle this issue, CF and its variants 

were proposed, for instance Locally Consistent CF (LCCF) [3], 
Local Coordinate CF (LCF) [11], Graph-regularized CF with 
Local Coordinate (LGCF) [9], Dual-graph regularized CF 
(GCF) [26] and Graph-Regularized LCF (GRLCF) [27].  

Although the enhanced representation results are produced 
by aforementioned manifold preserving CF variants, they still 
suffer from several obvious drawbacks. First, to preserve the 
manifold locality of representations, LCCF, GRLCF, LGCF 
and GCF usually search the neighbors of each sample using k-
neighborhood or ε-neighborhood firstly, and then pre-compute 
the graph weights by a separable step before factorization. But 
estimating an optimal k or ε still remains a tricky issue in real 
applications [17][22], and using the same k or ε value for each 
sample is also unreasonable since real application data usually 
have complex distributions [1]. Moreover, the pre-calculated 
weights also cannot be ensured to be optimal for calculating the 
new representation of original data explicitly. Second, real data 
usually has noise, redundant information and unfavorable 
features that may cause negative effects on the results. Thus, it 
would be better to weight and represent data in the recovered 
clean space, which can potentially produce more accurate and 
compact data representations. Third, although CF and variants 
have used a residue term to minimize the reconstruction error 
between the original data and the product of three factors as a 
hard constraint for discovering the new representation, we still 
argue that such operation assumes that a linear combination of 
the cluster centers should be able to represent each data point, 
but these hard constraints may be over-strict in the practical 
applications. For example, some real-world application dataset 
may have the nonlinear manifold structures. In such case, the 
results by the linear reconstruction may be inaccurate.  

In this paper, we therefore propose a novel unsupervised 
representation method termed Robust Flexible Auto-weighted 
Local-coordinate Concept Factorization (RFA-LCF). The idea 
of RFA-LCF is to enhance the data representation ability by 
explicitly improving the robust properties of factorization to 
noise and error by jointly recovering the underlying clean data, 
enhancing the similarity by adaptive weighting, and providing 
flexible residue for encoding the mismatch between data and 
the product by relaxing the hard constraint on the residue.  

For the robust flexible factorization, RFA-LCF improves the 
data representation in twofold. First, it enhances the robust 
properties against noise and gross errors by involving an error 
correction process, and then conducts the factorization in the 
recovered clean data space for enhancing the representations. 
Besides, RFA-LCF uses the sparse L2,1-norm to encode the 
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reconstruction loss between the recovered clean data and its 
reconstruction, since L2,1-norm is robust to noise and outliers 
and moreover has potential to minimize the loss [26]. Second, 
RFA-LCF considers relaxing the aforementioned mismatch to 
handle the data sampled from a nonlinear manifold, inspired by 
[16]. That is, RFA-LCF applies a flexible penalty term on the 
factorization loss by relaxing the existing assumption that each 
data point might be represented by a linear combination of the 
cluster centers, which is clearly a soft constraint.   

To guarantee the encoded locality and sparsity to be more 
accurate, RFA-LCF also integrates the adaptive reconstruction 
weighting with the robust flexible CF to discover the manifold 
structures of given data, basis concepts and new representation 
in an adaptive manner at the same time. Moreover, RFA-LCF 
also uses the robust adaptive sparse local coordinate coding 
performed in clean data space to represent the data by using a 
few most nearby basis concepts, which is different from LCF 
that performs the local coordinate coding in the original data 
space. Thus, the new representation by our RFA-LCF will be 
potentially more accurate, informative and robust to noise.   
 

2. PROBLEM FORMULATION 
 
We present the formulation of RFA-LCF. Given the dataset 

 1 2, , ..., d N
NX x x x   , RFA-LCF jointly obtains a L2,1-norm 

based sparse projection d dP  to remove noise and outliers 
in the data by embedding X onto it directly, and then runs the 
factorization over the recovered clean data TP X  to calculate 
two nonnegative matrices N RW and T R NV so that the 
product of X, W and TV , i.e., T d NXWV , can approximate 
the recovered clean data TP X . Clearly, RFA-LCF performs 
concept factorization in the clean data space spanned by using 
P rather than the original input space X, which can potentially 
make the factorization process more accurate and robust. For 
robust flexible CF, RFA-LCF set the factorization based on the 
clean data as   0, , T TP X X W V P X , where  , , X W V  is a 
transform function for factorizing data. Assuming that 
 , ,X W V is the linear regression function T TX P eb , where 
 1,1,...,1 T

e is a column vector of all ones and 1 db  is the 
bias vector, then 0

TP X  can encode the mismatch between 
T TX P eb  and TXWV . To encode the reconstruction residue 

0
TP X  more accurate, sparse L2,1-norm is imposed on it, i.e., 

2,1

T T T TX P eb VW X  . To encode neighborhood information 
and pairwise similarities more accurately, RFA-LCF encodes 
the manifold structures jointly over the clean data TP X , basis 
concept vectors XW  and new coordinates TV in an adaptive 
manner by minimizing the joint reconstruction error them 
explicitly, that is, 

2 2 2
    T T T T T T

F F F
P X P XQ W W Q V V Q , 

where Q is the reconstruction weight matrix. RFA-LCF also 
involves the robust adaptive neighborhood preserving local 
coordinate coding to represent data using a few most nearby 
basis concepts, which can potentially make the factorization 
result more informative. These discussions can lead to the 
following objective function for RFA-LCF:   

    2,12,1
,

. . , , 0,  0

       

 

T T T T

ii

O X P eb VW X f W V g Q P

s t W V Q Q
,(1) 

where , , 0W V Q are nonnegative constraints, 0iiQ is added 
to avoid the trivial solution Q I , and , , 0    are trade-off 
parameters. Since L2,1-norm forces the residue to be sparse in 
rows and robust to noise [25], so minimizing the L2,1-norm 
based residue has a potential to reduce the reconstruction error. 
 ,f W V is the robust adaptive locality and sparsity constraint 

term and  g Q  is auto-weighted learning term, defined as 
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To highlight the benefits of involving  ,f W V  and  g Q , 
next we briefly discuss the sum of them as follows:  
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from which one can find that the neighborhood relationship can 
also be encoded in an adaptive manner by integrating the 
reconstruction error 

2 2

    T T T T

F F
W W Q V V Q  based 

on the basis concept vectors TW  and coordinates TV into local 
coordinate coding. Besides, RFA-LCF performs encodes the 
coordinates in the clean data space, thus RFA-LCF involves a 
robust adaptive neighborhood preserving locality and sparsity 
constraint penalty between the anchor point ru  and ix .  

 
3. OPTIMIZATION 

 
RFA-LCF has several variables in RFA-LCF and they depend 
on each other, so we follow the common procedures to update 
them alternately. Let 1 2, ,...,T T T T NY X P eb VW X y y y       , O be 
the objective function, and N NM be a diagonal matrix with 
entries  2

1 / 2 , 1,2,..., i
iim y i N . Based on the property of 

L2,1-norm [25], we can have 

    
2,1

2

T T T T

T T T T T T T

X P eb VW X

tr P X be XWV M X P eb VW X

 

    
.  (4) 

By taking the derivative of Eq.(3) w.r.t. bias b and setting the 
derivative to zero, we can easily obtain 

  T T

Mb XWV Me P XMe N   ,                       (5) 

where   T
M iii

N e Me m is a constant. So, the flexible residue 
can be rewritten as 

 
 

T T T T

loss

T T T T T T T T

M

T T T T T T

e M M

T T T

e e

X P eb VW X

X P e e MVW X e MX P N VW X

H X P VW X ee VW X N

H X P H VW X





   

   

  

 

,   (6) 

where   T

e M MH I ee N  and  11 22, , ,   T T N

M NNe e M m m m . 
Then we have  2,1

2 TP tr P SP  and 
2,1

=T T T

e eH X P H VW X  

loss
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    2 T T T T T T

e etr P X XWV H MH X P VW X  , where S is a diagonal 
matrix with entries 

2
0.5 / i

iiS P , iP  is the i-th row vector of 
P. Suppose that each   0

iT T T

e eH X P H VW X  and 0iP   over 
each i, and let  , ,

TTH X P W V , we have the following matrix 
trace based formulation for RFA-LCF:   

    

    
   

, , , , ,

1

min

. . , , 0,  0



 



 

  

 

 



T T T T T T

e e
W V Q P M S

TN T T T T T T

i i ii

T T

ii

tr P X XWV H MH X P VW X

tr P x e P XW L P x e P XW

tr HGH tr P SP

s t W V Q Q

,    (7) 

where
 
and . As a result, the 

optimization of our RFA-LCF can be described as follows:   

1) Fix others, update the matrix factors W, V.  
Let and be Lagrange multipliers for constraints , 
and respectively,  and , then Lagrange 
function 1L of Eq.(7) can be constructed as 

    
    

     

1

1

T T T T T T

e e

TN T T T T T T

i i ii

T T

tr P X XWV H MH X P VW X

tr P x e P XW L P x e P XW

tr HGH tr W tr V







  

  

    



L

.  (8) 

By taking the derivatives of 1L w.r.t W and V, and using the 
Karush-Kuhn-Tucker conditions [33] , and , 
we can easily obtain the following updating rules:   
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,         (10) 

where , A represents a matrix whose rows 
are  ( )T

TT Ta diag X PP X  and B denotes a matrix whose 
columns are ( )T T Tb diag W X PP XW .   

2) Fix others, update P for error correction. 
We can obtain the projection P from the following problem:   

      
    

   
1

min T T T T T T

e e
P

TN T T T T T T

i i ii

T T T

J P tr P X XWV H MH X P VW X

tr P x e P XW L P x e P XW

tr P XGX P tr P SP



 



  

  

 

 .(11) 

By taking the derivative   / J P P  of  J P w.r.t. P, setting it 
to zero, we can update the projection P as 

   1T T TP X C G X S XCVW X  


     ,            (12) 

where    T
E W L E W    and E is an N R  matrix of all 

ones. After P is updated, we can use it together with the factors 
W and V to compute the adaptive weight matrix Q.  

3) Fix others, update the adaptive weighting matrix Q.  
By removing irrelevant terms to Q from Eq.(7), we can obtain 
the following reduced formulation:  

     min , . . 0,  0    T T
iiQ

J Q tr H I Q I Q H s t Q Q ,  (13) 

where  , ,
TTH X P W V . Let be the Lagrange multiplier for 

the nonnegative constraint , and , the Lagrange 
function 2L of Eq.(7) can be constructed as 

     2

T T Ttr H I Q I Q H tr Q    L .             (14) 

By taking the derivative of 2L  w.r.t Q, and using the KKT 
condition , we can obtain the updating rule for Q:    

 
 

T

ij

ij ij T

ij

H H
q q

H HQ
 .                                (15) 

We summarize the procedures of RFA-LCF in Algorithm 1, 
where the diagonal matrices M and S are initialized to be the 
identity matrices as [25] to ensure that each vector 0iP  and 
  0 

iT T T
e eH X P H VW X  over each index i is satisfied.  
 

Algorithm 1: Our Proposed RFA-LCF Framework
Inputs: Training data matrix X , control parameters , ,   , and
the constant R (rank of the factorization).  
Initialization: Initialize the weight matrix Q using the cosine 
similarity, i.e.,  cos ,ij i jQ x x ; Initialize the variables W and V 
to be random matrices; 0t .  
While not converged do 
1. Update W and representation V by Eqs.(9) and (10);  
2. Update the adaptive weight matrix Q  by Eq. (15) ;  
3. Update the robust projection P by Eq. (12) ;   
4. Convergence check: if

21   t t

F
V V , stop; else 1 t t . 

End while 
Output: Learnt new representation     1 


tT TV V .  

 
4. SIMULATION RESULTS 

 
We conduct simulations on six public real image databases to 
examine RFA-LCF for data clustering and representation. The 
results of our RFA-LCF are compared with those of 12 related 
nonnegative factorization algorithms, i.e., NMF [8], PNMF 
[28], GNMF [2], DNMF [18], DSNMF [13], PAMGNMF [19], 
CF [24], LCCF [3], LCF [11], LGCF [9], GRLCF [27] and 
GCF [26], which are closely related to our RFA-LCF. The 
information of evaluated datasets are shown in Table I.  

Table I. List of used datasets and dataset information.  
Data Type Dataset Name # Points # Dim # Class

Face 
images 

ORL [12] 400 1024 40
UMIST [23] 1012 1024 20

CMU PIE [20] 11554 1024 68
Object 
images 

ETH80 [29] 3280 1024 80
COIL100 [14] 7200 1024 100

Handwritten 
images

HWDB1.1-D [30] 2381 196 10
HWDB1.1-L [31] 12456 256 52

 
Fig.1: Visualization comparison of the constructed weights, where (a) 

Cosine weights, (b) CLR weights and (c) our adaptive weights.  

4.1. Visualization of Graph Adjacency Matrix 
We compare the adaptive weighting matrix Q of RFA-LCF with 
the Cosine similarity weights and CLR weights [15] used in 

 i iL diag v   TG I Q I Q  

jr jr 0W 
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GRLCF. ORL database is used as an example. We choose 
images of 10 people to construct the adjacency graphs, and the 
number of nearest neighbors is set to 7 [22] for each method for 
fair comparison. The weight matrices are shown in Fig.1. We 
find that more wrong inter-connections are produced in the 
Cosine weights and CLR weights, which may potentially result 
in high clustering error, compared with our weights.  

4.2. Convergence Analysis Results 
We present the convergence analysis results of our RFA-LCF 
in Fig.2. We find that divergence between two consecutive new 
representations by RFA-LCF is non-increasing in the iteration, 
and the convergence speed is also fast.  

      
(a) COIL100                                   (b) HWDB1.1-D 

Fig.2: Convergence curves of our RFA-LCF algorithm.  

4.3. Quantitative Evaluation of Image Clustering 
We perform K-means clustering with cosine distance over the 
new representation of each algorithm. We clearly follow the 
procedures in [21] for clustering. For each algorithm, the rank 
R is set to K+1 as [18] and we average results over 30 random 
initializations for K-means. Accuracy (AC) and F-measure [7] 
are used for quantitative evaluations. For each database, we 
vary K from 2 to 10 with step 1, and average the results over 10 
random selections of K categories to avoid the bias. Note that 
the mean and highest AC values are shown in Table II, from 
which we can find that our RFA-LCF delivers higher AC values 
than other compared methods in most cases.  

4.4. Clustering Image Data against Corruptions 
We also prepare evaluate the performance of clustering noisy 
data. To corrupt the data, we add random Gaussian noise with 
variance being 0-100 with interval 10 into the gray values of 
selected pixels. The results are shown in Fig.3. The results are 
obtained on two categories and F-measure is averaged over 50 
random selections of categories and k-means clustering. We 
find that our RFA-LCF can outperform the other methods.   

   
(a) HWDB1.1-D                                  (b) COIL100 

Fig.3: Clustering image data against different levels of corruptions.  
 

5. CONCLUSION  
We proposed an effective robust flexible auto-weighted local-
coordinate concept factorization framework for unsupervised 
data representation and clustering. Our method improves the 
accuracy of encoding neighborhood and factorization against 
noise and outliers by seamlessly integrates the robust flexible 
CF, robust sparse local coordinate coding and the adaptive 
weighting. The adaptive weighting strategy avoids the tricky 
process of selecting optimal parameters in defining the affinity. 
The flexible residue, coordinate coding and weighting are also 
performed in the recovered clean data space for potentially 
enhancing the representation results for clustering. Extensive 
evaluation have verified the validity of our method. In future, 
the out-of-sample extension of our model can be investigated.  
   Acknowledgement. This present work is partially supported 
by National Natural Science Foundation of China (61672365).  

Table II. Mean and highest clustering accuracy (AC) over the used six public image databases.  
        Dataset 

Method 
CMU PIE face database UMIST face database COIL100 object database 

Mean±std (%) Best (%) Mean±std (%) Best (%) Mean±std (%) Best (%)
NMF 23.99±12.51 51.2 24.36±12.49 51.4   27.50±11.76 52.9 

GNMF 28.10±10.96 52.6 30.50±12.39 58.5   31.84±12.09 59.6 
PNMF 39.20±11.73 60.8 46.72±12.34 71.6 58.14±9.25 76.0 
DNMF 31.82±9.01 53.5 30.86±14.08 59.3   63.63±13.86 90.9 

DSNMF 31.98±11.08 57.5 38.83±12.78 62.5   61.85±16.29 91.1 
PAMGNMF 36.81±15.53 63.3 46.04±10.86 64.7   64.71±13.14 89.9 

CF 21.97±13.38 51.3 21.97±13.38 51.3   44.61±14.44 75.5 
LCCF 37.80±11.25 61.9 39.01±11.96 62.6   52.78±16.58 85.8 

GRLCF 34.94±13.65 62.3 43.29±12.14 66.5   48.03±15.33 79.8 
LGCF 36.06±14.07 62.5 42.61±12.78 63.3   48.05±15.48 80.2 
LCF 37.09±12.41 57.3 42.15±12.66 63.3   47.61±15.27 79.1 
GCF 35.82±12.14 53.3 41.57±11.42 61.1   42.71±12.31 67.3 

RFA-LCF 41.58±12.84 65.9 48.83±13.10 74.7   67.59±13.88 92.5 

 
ETH80 object database HWDB1.1-D handwriting HWDB1.1-L handwriting 

Mean±std (%) Best (%) Mean±std (%) Best (%) Mean±std (%) Best (%)
NMF 24.94±12.42 52.3 25.55±12.34 52.7   24.67±11.84 51.3 

GNMF 26.42±11.60 52.4 30.64±11.18 54.0   27.74±11.40 53.6 
PNMF 45.65±13.24 72.1 35.08±12.73 63.4   37.51±11.52 59.2 
DNMF 22.06±13.33 51.2 27.02±11.49 51.7   25.16±11.59 51.3 

DSNMF 26.06±12.27 54.2 33.95±10.10 54.7   27.93±12.15 54.3 
PAMGNMF 25.49±12.41 52.5 28.73±11.63 53.1   25.39±12.33 52.4 

CF 33.65±13.23 63.5 28.99±12.01 55.3   28.66±11.21 53.7 
LCCF 34.97±14.58 67.9 32.74±12.58 58.5   30.62±11.47 54.1 

GRLCF 36.39±13.61 66.8 34.07±12.59 60.8   32.79±11.72 57.1 
LGCF 36.34±13.42 66.0 34.95±12.88 62.1   32.63±11.83 56.6 
LCF 36.04±13.79 67.1 29.17±11.91 54.9   31.43±11.74 56.1 
GCF 33.40±13.29 64.0 28.89±11.97 55.0   30.52±11.16 54.2 

RFA-LCF 49.05±14.63 78.0 38.71±13.59 68.7   39.85±11.83 62.2   
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