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ABSTRACT

Predicting the performance of queries when labels are not
present has been a recurring problem faced in information retrieval
systems. Beyond its clear importance, it can also be applied to aid
post-retrieval optimization approaches such as re-ranking or rank-
aggregation. However, most post-retrieval performance prediction
approaches to retrieval systems rely on generating a single effective-
ness value of performance for queries. We propose an alternative
method to assess the performance of systems reliant on similarity
search, which consists of predicting the individual relevance of
ranked results according to the distribution of similarity scores of a
given query compared to instances in a collection. The idea is that
relationships between the ith ranked score and other scores of the
rank can be leveraged to generate features which, in turn, are used
to classify ranked objects according to their relevance to the query.
We propose a positional classification scheme, in conjunction with
simple and fast score-based features to predict the relevance of the
top-10 results of a similarity search rank. Our results in nine sce-
narios, comprising three different large image datasets, show good
prediction accuracy for the top-10 results, with the advantage of
being amenable suitable to deploy at query time.

Index Terms— Relevance Prediction, Query Performance Pre-
diction, Similarity Search, Information Retrieval, Machine Learning

1. INTRODUCTION

Several post-query optimization approaches applied to information
retrieval systems, such as rank-aggregation [1] or re-ranking [2],
either require, or can be greatly improved by, a correct estimation
of the query’s performance. In a testing scenario, however, only
information pertaining to the query itself can be used for such,
since it is likely that no labels are present. Performance estimation
through analysis of query-related information is a well-established
problem in Information Retrieval, commonly refered to as Query
Performance Prediction (QPP) [3]. Its main goal is to derive a
measure that reflects the overall success of a query. The clarity
score [3] is a staple on QPP and query-difficulty estimation. Two
of the most popular measures for QPP, the Weighted Information
Gain [4] and the Normalized Query Commitment [5], are both com-
puted from distributions of similarity scores. Infering the value of a
retrieval effectiveness measure, such as mAP [6], is another common
approach.

Recently, several works have been proposed for post-retrieval
QPP [7, 8, 9, 10, 11, 12, 13]. Zhang et al. [13] proposed a classi-
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fication strategy, which classifies queries in three categories (easy,
medium, hard) according to features extracted from the statistics of
the distribution of scores. NeuralQPP, from Zamani et al. [12], uses
three neural components, one for top-k scores, one for term dis-
tribution, and one for representation of documents in the semantic
space. Using weak supervision, the authors train their three neural
components for QPP. Sun et al. [11] use contextual information from
ranked lists of results to create a feature-matrix, and a convolutional
neural network for classification. Their work focus is, like ours, on
content-based image retrieval tasks.

Those methods, however, lack any positional information about
the quality of results. In this work, we explore an alternative formu-
lation of the QPP problem, which we dub Relevance Prediction, aim-
ing at quality assessment of individual results within a rank resultant
from similarity search. We show that such prediction for similarity
search, which is commonly used in Information Retrieval Systems,
is not only feasible, but works well enough with minimal overhead
added to query efficiency.

Behind the concept of relevance prediction is the hypothesis that
both the rank and distribution of scores produced by a similarity
search engine hold clues to the performance of the system, and those
clues can be exploited to determine which of the ranked objects are
likely relevant to the query at hand. This is closely related to the
problem of Meta Recognition [14, 15], deciding whether the output
of a classifier is a match or non-match, with two important differ-
ences: (1) in relevance prediction we are concerned with multiple
outputs instead of the top only; and (2) the prediction is applied to
objects of the same nature as the probe. A rank-k Relevance Pre-
diction system is concerned with finding relevant/non-relevant labels
for the top-k ranked objects for a certain query of a retrieval system.

Inspired by the work of Scheirer et al. [15], we introduce an ap-
proach to rank-k Relevance Prediction based on learning features
extracted from rank scores which employs multiple positional clas-
sifiers to predict the relevance of the top-k results in a rank. We eval-
uate the proposed method in three different datasets, each of which
with three variations, covering a wide range of similarity search se-
tups, such as different descriptors, metric used, or query perturba-
tions. Altogether, our results show that the proposed methods obtain
good and consistent results between the many tested scenarios, espe-
cially considering the simplicity of the descriptors employed. Fur-
thermore, both tecnhiques are fast, since they require only feature
extraction and testing, thus being easy to deploy at query time.

The remainder of this paper is organized as follows: Section 2
gives a formal description of the Relevance Prediction problem while
Section 3 presents our approach to solving it. Section 4 describes our
evaluation strategy and presents the obtained results. Finally, Sec-
tion 5 concludes this work and discusses what we expect for future
work in this field.
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2. RELEVANCE PREDICTION

Information Retrieval (IR) systems are tasked with satisfying some
information need posed by their users. In practical terms, this is of-
ten retrieving, from a collection of objects C, the most similar objects
to some query object o,. We use object as a general term for multi-
media data sources, such as text, images, or videos. IR systems are
frequently modeled around the similarity search problem. For a set
of points P in a metric space M and given a query point ¢ € M,
the nearest-neighbors similarity search problem consists in finding
the P, C P, such that |P;| = k and P, are the closest points to ¢ in
M. In IR, similarity search is applied as a mean to retrieve the most
similar objects to a query object o4, forming a rank R, C C, such
that the objects in R, are ordered according to their similarity to oq.

Relevance is a pivotal concept within the study of IR systems,
often used to denote if a retrieved document satisfies the information
need presented by a user. An example of such is: consider an IR sys-
tem for retrieving pictures of buildings. Considering a query picture
of a certain building, relevant information for this particular query
are images from the collection featuring the same building. Clearly,
the notion of relevance is encoded within the objective of the IR sys-
tem itself. Performance of IR systems is commonly measured by the
amount and ordering of relevant objects within a rank.

While Query Performance Prediction is an indirect way to as-
sess the performance of an IR system without relevance labels, Rel-
evance Prediction is concerned with predicting the relevance labels
themselves. Thus, the objective of a rank-k relevance prediction
system is to find a sequence of labels P? = {p1,p2,..., pr}, such
that p; = 1 if the ith ranked object is predicted as relevant, and
p; = 0 otherwise. A clear advantage of this formulation is the posi-
tional information obtained when good predictions are made. Nev-
ertheless, it is also a more difficult problem since relevance is such
an intrinsic characteristic of IR systems, and thus hard to predict.

3. LEARNING-BASED RELEVANCE PREDICTION

Inspired by the work of Scheirer et al. [15], which presented a
method for learning-based failure detection in classification sys-
tems, we propose a learning-based relevance prediction approach
based on simple and fast features extracted from an ordered set of
similarity scores. Our focus were descriptors which do not add
significant overhead to the retrieval procedure, in such way that any
decision stemming from the prediction can be quickly performed in
sequential order. Additionally, all features are independent to the
metric space used, requiring only that a single measurement of sim-
ilarity is available. Despite this, both the classification scheme and
features are easy to extend to a multiple similarity score scenario.
Our approach employs & independent classifiers, one for each
of the top-k positions. The features, however, are not computed
independently. A feature computed for the third rank position, for
example, still depends on the similarity value of the remaining ¢ €
{1,2,4, ..., k} positions of the rank. The features of Section 3.1
were used in conjunction with a Support Vector Machines [16] clas-
sifier, using an radial basis function kernel [17], in a 5x2 cross vali-
dation scheme consisting of a two-fold division, in which each set is
used as training and test once, repeated for five rounds. The number
of positive (relevant) and negative (non-relevant) examples for the
classifier is directly tied to the performance of the ranking system,
specifically for the top-k positions. If the ranking system has very
high performance for the top-k positions, it is possible that some of
those positions have no non-relevant examples for training at all. A
simple workaround is to employ a one-class SVM classifier instead

of a two-class one when no negative examples are present within our
training set.

3.1. Features From Similarities

Following the definitions in Section 2, suppose that, for some
query g, we have a totally ordered set of similarity scores S; =
{s1, 82, ..., 5n}. Bellow, we define three score-based features used
alongside with relevance predictors.

e Delta a Feature (A,): This feature, computed for position 4
of the rank, is the vector:

(80— 4))

VA, = (81— 8i), ey (8i—1 — 84), (Si1 — 82), -

(€]
such that a is an adjustable parameter that controls the length
of the feature vector, such that [VA,| = a — 1. This feature

explores the changes between sequential scores, centered at
the target position, to describe whether the object at the posi-
tion is relevant or not.

o Shift DCT b Feature (sDCT}): This feature consists of
computing the Discrete Cosine Transform (dct) [18] of the
scores from rank position ¢ to position ¢ + (b — 1):

‘ZiDCTb = dct({Si, Sit1y ey Sitb—1}) 2)

again, b is an adjustable parameter that control the length of
the feature vector, such that |17;iDCTb| = b. This feature has
also been employed by Scheirer et al [15], with the rationale
that such transform has been shown to be a good way to rep-
resent the information within a score series [19].

e Fusion Feature (F'S,;): This feature is the concatenation of
the two aforementioned features into a single feature vector,
or: N L

Vis,, = VA, Viper, (3)
such that ™ is the concatenation operator. By directly com-
bining both features into a single feature vector we expect
to explore any complementarity existent between both afore-
mentioned features. The values of a and b control the length
of the individual feature vectors, such that |V S, = (a—
1)+

3.2. Similarity-Search Implementation

Ranking with similarity search was performed in three image
datasets, Places365 [20], Vggfaces [21], and Imagenet [22]. While
the first dataset was considered in its entirety, the other two were
sampled. We adapted the three datasets from being originally clas-
sification problems to retrieval problems instead, by considering as
relevant other images from the same class as the query. Image de-
scriptions are generated globally from deep neural networks, tuned
to the datasets in question. Finally, we generate ranks by perform-
ing nearest-neighbors similarity search using the image descriptors
extracted. Table 1 summarizes each search scenario performed,
alongside some additional information about the adopted image
sets.

4. EVALUATION & DISCUSSION

4.1. Evaluation Setup

With nine different search senarios, we aimed at covering variations
such as search performance, similarity metrics, and descriptors. Fur-
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Table 1. Summary of Relevance Prediction Scenarios

query

dataset type size # of queries alias descriptor metric postprocess? P@10
VGGF VGG16-L2Sq vggl6(1x2622) L2 Squared no 95.4%

vggfaces[21] faces ~262k 7,866 VGGF VGG16-L2Sq + Pert  vggl6(1x2622) L2 Squared yes 66.7%
VGGF VGG16-Cos vggl6(1x2622) Cosine no 96.3%

P365 VGG16-L2Sq vggl6(1x365) L2 Squared no 41.8%

places365[20] scenes  ~330k 3,650 P365 VGG16-Cos vggl6(1x365) Cosine no 44.1%
P365 R152-L.2Sq Resnet(1x365) L2 Squared no 38.4%

INET Rv2-L2Sq ResnetV2(1x1536) L2 Squared no 78.8%

imagenet[22]  objects 500k 3,000 INET Rv2-Canb ResnetV2(1x1536) Canberra no 75.9%
INET Rv2-Cheb ResnetV2(1x1536) Chebyshev  no 75.9%

thermore, one of the datasets had their queries postprocessed to sim-
ulate perturbations in the acquisition step, see VGGF VGG16-L2Sq
+ Pert on Table 1. In evaluating this many search scenarios, our ob-
jective was showing that it is possible to develop relevance predic-
tion methods with consistent accuracy by computing features from
scores, regardless of the approach used to generate them.

As outlined in Section 2, our work is concerned with rank-k
binary relevance prediction of a query. Thus, for some query g,
the output of our system is a sequence of binary labels P¢ =
{p1,p2,...,pr} such that p; = 1 if the ith element of the rank
is predicted as relevant, and p; = O otherwise. In addition, the
groundtruth labels G = {g1, g2, ..., gx } such that ¢, € {0,1}
are available. We have that g; = 1 if the ith element of the rank is
relevant to the query, and g; = 0 otherwise. On account of space
constraints, we show only results for £ = 10.

Considering the nature of our output is akin to a binary-
classification problem output, we can quantify the number of True
Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN). For evaluation purposes, we employ the commonly
used Normalized Accuracy (nACC), which takes into account both
TP and TN. With it, we evaluate whether our system correctly pre-
dicts the ith position of a rank as either relevant or non-relevant.
Below is the definition of nACC:

_TP 4 TN _
nACC — IPTFN 5 TN+FP )
Table 2 shows a toy example to clarify this evaluation approach.
This example considers that we have five queries, for which we want
to predict the first three positions of their rank, that is, we have a
top-3 relevance prediction. The columns under G, g1, g2, and g3
depict the groundtruth of the top-3 position of the rank, respectively.
Under P, the columns p1, p2, and p3 depict the predicted relevances
for the top-3 positions of the rank, respectively. Because we mea-
sure the nACC positionally, we compare column g; with column p;,
column g2 with column p2, and column gz with column ps. This
results in three measurements of nACC:

a1 =nACC({1,0,1,1,0},{1,1,1,1,0}) = 0.750
az =nACC({0,0,0,1,0},{1,0,0,1,0}) = 0.875  (5)
as =nACC({1,0,1,1,1},{0,0,1,0,0}) = 0.625

4.2. Results

Figure 1 depicts results for the normalized accuracy evaluation of
each of the top-10 positions in the evaluated ranks. For the results
reported, we used a = 20 and b = 20. While adjusting the values of

Table 2. Example of a top-3 prediction with five sample queries

. G P
Queries
92 93 | P1 P2 P3
Query 01 1 0 1 1 1 0
Query 02 | 0 0o 0 1 0 0
Query 03 | 1 0 1 1 0 1
Query 04 | 1 1 1 1 1 0
Query 05 | 0 0 1 0 0 0

a and b could potentially lead to better results, we do not explore this
optimization in this paper. For simplification, we omit the subscript,
referring to the features as A, sDCT’, and F'S in the discussion be-
low. The curves show a consistent behavior for all positions of the
rank, except for the first one, which sees an spike close to 1.0 nor-
malized accuracy. Overall, the first position of the rank is the easiest
to predict, on account of the large score difference between it and
other scores of the rank when the object in that position is a match.
Thus, it is expected that features which take into account relation-
ships among scores obtain better results at predicting the relevance
of this particular position of the rank.

Another trend observed in the results is that, besides the first
position of the rank, prediction among positions two to ten tend to
be consistent, without large accuracy spikes. This fact hints towards
the structure of the rank being somewhat indistinguishable between
the different positions, and thus a method that classifies well enough
position ¢ of the rank should also work well enough for any other
position j, at least for the nine setups tested herein.

Between the different three different datasets tested, there seems
to be a tendency toward better classification in datasets were rank-
ing performed at least reasonably well. It is likely that our methods
struggle more to predict non-relevant entries.

Considering the variations within the Places365 dataset, chang-
ing either the distance metric or the descriptor employed had little
impact on the measured accuracy, mostly impacting the prediction
of the first position. In the Vggfaces dataset, adding query perturba-
tions mostly impacted the A feature, decreasing its accuracy across
all positions of the rank. It also had a small impact on the prediction
of the top-1 result. With the Imagenet results, we observe minor
impact the metric space used has on the prediction accuracy.

The three features employed had similar results, with the F'S
feature showing the most consistent results among the three options,
although by a small margin. Since both A and sDC'T features are
fast to compute, combining both to generate the F'S feature has little
impact on the efficiency of the method and should be the preferable
approach.
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Fig. 1. Normalized accuracy (nACC) curves for the three types of score-based features. Nine experiments are depicted in this figure, covering
the scenarios of Table 1. At x = 4, each curve shows the nACC at predicting the relevance of the ith element of the rank, using each of the

proposed features. For all features we have a = 20 and b = 20.

Our results show the viability of using score-based features to
predict the relevance of results from a similarity search engine. Fur-
thermore, there are a few points such as the small amount of training
samples and imbalance between relevant and non-relevant samples
that could be further improved in order to achieve even better pre-
dictions.

5. CONCLUSIONS

This work presented a classification framework for Relevance Pre-
diction in retrieval systems relying on similarity searches. Closely
related to the query performance prediction problem, relevance pre-
diction is concerned with predicting the relevance (or lack thereof)
of the top-k ranked results from a similarity query. Our proposal is
to employ k classifiers, such that the ith one is used to predict the
ith position of the rank, in conjunction to features extracted from
relationships between the scores in the rank. Our features were de-
signed to be fast to compute, and feasible to apply at query time, and
utilize score differences or transformations on sequential scores. To
evaluate our proposal, we devised nine different testing scenarios,
spanning three different image retrieval datasets, focusing on a wide
range of methods to generate similarity scores, since those are the
core of our method.

Our results in all scenarios show that the proposed classifica-
tion approach achieves good and consistent results in predicting the
relevance of the top-10 results from similarity searches. The first po-
sition of the rank is particularly easy to predict, since its score, when
the top ranked object is relevant, usually differs greatly from the re-
maining entries of the rank. However, our results in the remaining
positions are also good, and consistent. Between the different fea-
tures proposed, or their fusion into a single feature, the latter option
obtained the best results in most scenarios, although without a large
difference from the other features. We have also observed that the
relevance prediction is likely related to the retrieval performance of
the tested scenario. As future work, we aim at creating training sets
more balanced with non-relevant examples since, for some positions,
there is a large imbalance. Moreover, we intend to expand our set of
features to contain more score-based features, as well as features
based on rank structure. Exploring alternative classification frame-
works, such as a single classifier for all top-k, is another suitable
way to further extend our current method.
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