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ABSTRACT

Cross-modal retrieval has been recently proposed to find an
appropriate subspace where the similarity among different
modalities, such as image and text, can be directly measured.
In this paper, we propose Multi-step Self-Attention Network
(MSAN) to perform cross-modal retrieval in a limited text
space with multiple attention steps, that can selectively attend
to partial shared information at each step and aggregate useful
information over multiple steps to measure the final similarity.
In order to achieve better retrieval results with faster training
speed, we introduce global prior knowledge as the global
reference information. Extensive experiments on Flickr30K
and MSCOCO, show that MSAN achieves new state-of-the-art
results in accuracy for cross-modal retrieval.

Index Terms— Cross-modal retrieval, Multi-step self-
attention, Limited text space, Global prior knowledge

1. INTRODUCTION

Due to the intrinsical heterogeneity of multimedia data, the
main challenge in cross-modal retrieval is how to embed het-
erogeneous multimedia data into a homogeneous space, so
that their similarity can be measured directly. Focusing on the
retrieval between image and text, we address two problems
here.

The first problem is how to learn efficient features. Most
traditional methods [1, 2, 3, 4] simply extract global features
for both image and text by CNN [5, 6] or RNN. However, they
ignore the fact that global features always contain massive
redundant information, that is, modality-specific information.
Modality-specific information is unique, which may not exist
in any other modalities in addition to itself. Recently, some
attention-based methods [7, 8, 9] try to extract a list of features
for image regions and words. However, they only consider
the object-level alignments between image regions and words
but ignore the rich relation information which may play an
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Fig. 1. An overview of our proposed Multi-step Self-Attention
Network (MSAN). Paths in purple and gold represent the
network of visual attention and textual attention respectively.

indispensable role in cross-modal retrieval. As mentioned in
[10], image captioning models [11, 3, 12] can be used to learn
image features with rich relation information. Given an input
image, we can get sensible descriptive sentences which contain
nouns and verbs. That is, image captioning models are able
to not only recognize the objects in the image (nouns), but
also preserve rich relation information among different objects
(verbs). Therefore, we adopt image captioning models to make
up for the shortcomings of the traditional CNN features.

The second problem is how to find a homogeneous space.
Since we only focus on the retrieval between image and text,
cross-modal retrieval can be achieved by a common space
[13, 14, 1, 15], a text space [16, 17, 10] or an image space
[2]. For the human brain, textual features are closer to human
understanding (and language) than the pixel-based features
[18]. Thus a text space can better simulate the human cognitive
behavior during retrieval. In most cases, people only need to
remember some of the commonly used words to meet their
daily needs. Accordingly, we aim to explore the possibility of
performing cross-modal retrieval in a limited text space [10].
The ability for the text space to understand is limited by the
size of the vocabulary. The bigger the vocabulary, the stronger
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Fig. 2. Detailed Illustration of the multi-step self-attention
network.

the understanding ability. Increasing the number of words
blindly will not improve the retrieval performance but increase
the complexity of the method in time and space.

To address the two problems mentioned above, we propose
Multi-step Self-Attention Network (MSAN). Given an image-
text pair, MSAN first extracts a list of features from image
regions and key words. Then, MSAN adopts self-attention
strategy to learn object-level alignments between image and
text, and obtain the local features by weighted average. Fol-
lowing [10], we add a fusion layer on top to fuse the image
local features and relation features, as well as embed them into
a limited text space. Considering the step-by-step nature of
human cognition during retrieval, MSAN adopts multiple at-
tention steps to recurrently attend to partial shared information
at each step, and then aggregate useful information over multi-
ple steps to distill the shared information as much as possible.
Finally, in order to achieve better retrieval results with faster
training speed, we introduce global prior knowledge as the
global reference information. The final similarity is obtained
by the summation of the similarity at each step.

Our core contributions are summarised as follows:

e In addition to object-level alignments, MSAN is able
to capture rich relation information ignored by prior
attention-based methods, which plays an indispensable
role in cross-modal retrieval.

e We introduce global prior knowledge as the global ref-
erence information, which is able to achieve better re-
trieval results with faster training speed.

2. PROPOSED METHOD

2.1. Feature Extraction

Image representation  As shown in the purple path in Fig.
1, features for image regions are extracted from the last pooling
layer of VGG19 (pool5) [5]. The pool5 layer consists of 512
feature maps and the size of each feature map is 7x7, which
means that the number of image regions is 49 and each is
represented by a 512 dimensional vector. Given an input

image i, we can extract a list of features {v{, ..., v’ }, where
N denotes the total number of image regions and v¢, is a
512 dimensional vector for the n-th region. As for relation
feature, following [10], we regard the 512-dimensional NIC
feature as the relation feature viel, which contains rich relation
information.

Text representation As shown in the golden path in Fig.
1, we employ bidirectional LSTM to extract d dimensional
features for each word in the text, which takes the form:

h{® = LSTMy, (a:t, h{i”l) ,
hb® = LSTMyy <xt,h§fl) ,
(nf* + i)

S
Uy = ——————
n b
2

(O]

where z; represent the input word at time ¢. hJ" and hb
represent the hidden states at time ¢ from the forward LSTM
and backward LSTM respectively. The feature u; for each
word is obtained by averaging h{ “ and hb™. Finally, we can
extract a list of features {uj, ..., u% } from each word in the
text s, where u; denotes the d-dimensional feature vector for
the n-th word. Specially, d is also the dimensionality of the
limited text space.

2.2. Multi-Step Self-Attention Network

Fig. 2 shows the detailed self-attention network employed at
each step k, which contains two separate paths for image and
text respectively. Accordingly, self-attention network is able
to make the image or text learn to attend to itself without any
image-text pair information.

Visual attention ~ Given a list of features {v!,...,v%} for
each region in image i, the image local feature v __, at step k
is given by:

N
k _ v o1
Vlocal = E :ainvrw
n=1

af, = softmax (fatt (vi,hE_1)),

fart(viy, hy 1) = tanh(Wlvl,) © tanh(Wy, ki),

)

where hy _; denotes the previous context vector for image. o,

represents the attention weight corresponding to the n-th image
region. The image local feature vf° ; at step k is computed as
an average of the image region features weighted with attention
weight af,. fatt(vl, hY_,) denotes the visual self-attention
function which computes the unnormalized attention weight
for the n-th image region. W and Wk, represent the trainable
parameters of the visual attention layer in Fig. 2.

Then, following [10], we add a fusion layer to fuse vlkocal
and v’ _,, as well as embed them into a limited text space:

rel?
vlkocal =BN (kalkocal> ’
vF = Relu (BN (vlkocal + vf_el)) s

where v* denotes the limited text space feature for image i,
and W* embeds Ulkocal into a limited text space.

3
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Textual attention ~We have obtained a list features {u3, ...
for each word in the text s. At step k, similar to visual attention,
the text local feature u* is given by:

N
k _ 2 u 8
u = Ay Uy
n=1

aft, = softmax (fast (uf, hi_1)),

Jate(ufy, hif_y) = tanh(Wju3,) © tanh(Wi, hit_y),

“)

where hj!_; denotes the previous context vector for text. o,
represents the attention weight corresponding to the n-th word.
The text local feature uf ., is obtained from an weighted
average of the word features. fu(uf, ki) denotes the self-
attention function for the text. Wk and WP, represent the
trainable parameters of the textual attention layer in Fig. 2.
Context vector In order to encode the context information
that has already been attended to, we employ an extra identity
connection to obtain the context vector hj, and h}} at the next
step inspired by ResNet [6], which takes the form:

ni = Veatt (o5, by ) + By,

5

RY = T_att (u’“,h};,l) +hY_q, ®
where k € {1,---, K} and V_att and T_att represent the
procedure of visual attention and textual attention respectively.
The identity connection is able to control the flow of informa-
tion and pass on information that needs to be preserved to the
next step.

Instead of initializing h§ and h§ by mean vectors, we
introduce global prior knowledge which acts as a “mentor”.
Global prior knowledge is able to help the self-attention net-
work locate key information quickly and thus lead to faster
convergence and better accuracy. The initialization is give by:

hg = vgiobat = Wlobal * fugg, ©
h§ = ugiobal,

where Vgiopar and ugiopar represent the global features for
image and text respectively, which can be regarded as the
global reference information as well. W44 embeds 4096-
dimensional VGG feature f,,, into the limited text space.
Uglobal 1S the averaged hidden state of BILSTM at the last time
step.

Finally, we perform K steps to recurrently attend to par-
tial shared information, and the self-attention mechanism em-
ployed at each step k stays the same.

2.3. Similarity Measurement

Since we have obtained the image and text local features at
each step k, the next step is to compare their similarity respec-
tively. We define a scoring function s(v, u) = v - u, where v
and u represent the image and text local features respectively.
To make s equivalent to cosine similarity, v and ¢ are first
scaled to have unit norm by the L2Norm layer. Accordingly,
the similarity s* at step k is give by:

sk =k -uk, ()

yuj

Table 2. The effect of different numbers of attention steps on
Flickr30K. K denotes the total number of attention steps.

Img2Txt Txt2Img
R@1 R@5 R@10 R@1 R@5 R@I10

44.0 73.0 82.6 332 64.0 75.4
43.0 73.7 83.7 33.5 64.5 75.4
40.5 71.1 80.1 322 62.3 73.0

xR
TRTIT
W N =

we add up the similarity at each step to obtain the final similar-
ity S:

K
S = Z sF. ®)
k=0

Then, pairwise ranking loss function is exploited to opti-
mize the model.

3. EXPERIMENTS

In this section, we perform extensive experiments on Flick-
r30K [20] and MSCOCO [21] following the dataset splits in
[14]. Evaluation is performed using Recall@K (with K =1, 5,
10), which computes the mean number of images (texts) for
which the correct texts (images) is ranked within the top-K
retrieved results. Higher Recall@K indicates better results.

3.1. Implementation Details

To demonstrate the efficiency of self-attention mechanism and
relation information in MSAN, we design the following vari-
ants: MSAN-obj abandons the relation information v’,_, and
only considers the object-level alignments between image re-
gions and key words; MSAN-glob removes the multi-step self-
attention network and simply use the global features for both
image and text; MSAN is our full model with self-attention
mechanism and relation information.

We set d to 1024 and Wyiopar is a 4096 x 1024 embedding
matrix. The dimension of each attention layer is set to 512
with dropout ratio 0.5. The number of attention steps K is set
to 2, which empirically shows the best experimental results.
And the margin m is set to 0.3 in all our experiments. During
training, we adopt Adam optimizer to optimize the model with
learning rate 0.0002 for the first 10 epochs and then decay the
learning rate by 0.1 for the remaining 10 epochs. We use a
mini-batch size of 128 in all our experiments.

3.2. Comparison with the State-of-the-art

First, we compare MSAN with several current state-of-the-art
methods on Flickr30K and MSCOCO in Table 1. Img2Txt
and Txt2Img denote image-to-text retrieval and text-to-image
retrieval respectively. From Table 1, we can observe that
MSAN achieves new state-of-the-art results in accuracy for
cross-modal retrieval on all datasets, which demonstrates the
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Table 1. Image-to-text and text-to-image retrieval results on Flickr30K and MSCOCO.

Flickr30K MSCOCO
Img2Txt Txt2Img Img2Txt Txt2Img
R@1 R@5 R@10 R@1 R@5 R@I10 R@l R@5 R@10 R@l R@5 R@I0

DSPE [1] 40.3 68.9 79.9 29.7 60.1 72.1 50.1 79.7 89.2 39.6 75.2 86.9
sm-LSTM [7] 424 67.5 79.9 28.2 57.0 68.4 52.4 81.7 90.8 38.6 73.4 84.6
DAN (VGG) [8] 414 73.5 82.5 31.8 61.7 72.5

LTS [10] 31.2 62.5 75.8 21.5 48.9 61.5 455 78.7 88.8 30.2 66.0 80.5
VSE++ [19] 31.9 - 68.0 23.1 - 60.7 43.6 - 84.6 33.7 - 81.0
HM-LSTM [15] 38.1 - 76.5 27.7 - 68.8 43.9 - 87.8 36.1 - 86.7
MSAN:-obj 37.6 64.6 75.8 273 56.2 67.8 46.1 80.0 89.5 36.6 71.3 85.1
MSAN-glob 354 66.7 76.5 26.9 57.3 70 46.2 80.4 89.1 38.1 73.5 86.1
MSAN 43.0 73.7 83.7 33.5 64.5 75.4 52.9 86.5 94.4 43.0 79.0 89.4

Table 3. The effect of global prior knowledge on Flickr30K.
“MSAN with prior” is trained with global prior knowledge and
“MSAN w/o prior” is trained without global prior knowledge.

Img2Txt Txt2Img
R@] R@5 R@l10 R@l R@5 R@I10
MSAN with prior 43.0  73.7 83.7 33.5 64.5 754
MSAN w/o prior  42.0  72.1 81.9 329 63.6 74.6

efficiency of MSAN. For a fair comparison, the results of
VSE++ are based on 1-crop VGG image features without
fine-tuning. And sm-LSTM represents the best single model
without ensemble. Better results can be observed in [19] and
[7] respectively.

When comparing between MSAN-glob and MSAN, we
can observe that our multi-step self-attention network is very
effective, since MSAN outperforms MSAN-glob on all dataset-
s. Meanwhile, MSAN achieves significant improvement in
accuracy compared with MSAN-obj, which reveals the impor-
tance of relation information.

3.3. Effect of the Number of Attention Steps

In Table 2, we show the experimental results of our full model
MSAN with different numbers of attention steps (K = 1,2,3)
on Flickr30K. We can observe that MSAN achieves the best
results when K = 2 for Flickr30K. Note that when K grows
bigger, the performance degrades obviously due to the po-
tential over-fitting problem. Therefore, we set K = 2 for
Flickr30K and MSCOCO, which empirically shows the best
results.

3.4. Effect of Global Prior Knowledge

To demonstrate the importance of global prior knowledge,
we show the experimental results for two variants of our full
model: “MSAN with prior” and “MSAN w/o prior”. As shown
in Table 3, “MSAN with prior” performs better than “ MSAN

6000
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—— MSAN w/o prior
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2000

1000

P
M""‘W“ﬁﬁ‘ R
200 400

600 800
training steps

1000 1200 1400

Fig. 3. Illustration of two curves that each depicts the change
of losses during training. The orange and blue curve reflect
the change of losses for “MSAN w/o prior” and “MSAN with
prior” respectively.

w/o prior”’, especially on image-to-text retrieval. So global
prior knowledge is able to improve the retrieval accuracy.

Moreover, global prior knowledge is able to accelerate con-
vergence during training. As shown in Fig. 3 the orange curve
(“MSAN w/o prior”) lies above the blue curve (“MSAN with
prior”’), which demonstrates that “MSAN with prior” trains
more faster than “MSAN w/o prior”.

Therefore, due to the use of global prior knowledge as
global reference information, we can achieve better retrieval
results with faster training speed.

4. CONCLUSIONS

In this paper, we propose a novel model MSAN to simulate
the procedure of human cognitive behaviour during retrieval,
aiming to perform cross-modal retrieval in a limited text space
with multiple self-attention steps. Extensive experiments on
three benchmark datasets demonstrate the efficiency of our
proposed model. In the future, we will explore the efficiency
of relation features more deeply and try some stronger CNNss,
such as ResNet.
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