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ABSTRACT 

Due to the advantages of retrieval speed and storage space, 

deep hashing methods have become a research hotspot in 

the field of large-scale image retrieval. Most of existing deep 

hashing methods pay close attention to similarity between 

images without images at the top of the ranking list similar to 

query targets. In the paper, a novel deep hashing model is 

proposed to preserve top images similar to the query images 

and optimize the quality of hash codes for image retrieval. 

Specifically, the optimized AlexNet is utilized to extract 

discriminative image representations and learn hashing 

functions simultaneously. The loss function based on 

acceleration strategy is designed to ensure similarity 

between returned images at the top of the ranking list and 

query images. In addition, we implement the model training 

in a batch-process fashion to low the image storage. 

Moreover, our extensive experiments on standard 

benchmarks demonstrate that our method outperforms 

several state-of-the-art deep hashing methods. 

Index Terms— Deep Hashing, Image Retrieval, 

Similarity, Ranking List, AlexNet. 

1. INTRODUCTION 

The Content-Based Image Retrieval (CBIR) has been a very 

active research domain in computer vision for large image 

database [1,2]. Due to efficient retrieval speed and low 

storage cost, the hashing that belongs to one of the nearest 

neighbor search methods has been widely us ed in the field 

of large-scale image retrieval [3]. Existing hashing methods 

can be divided into data-independent and data-dependent. 

Unlike data-independent approaches, data-dependent 

methods try to learn hash function from training data, which 

is called learning-based hashing approaches  [4]. 

According to whether supervision information of training 

samples is used, learning-based hashing methods can be 

divided into two categories  in detail: unsupervised learning 

and supervised learning. Based on supervised information, 

supervised hash learning methods are further divided into 

three categories. (1)Point-wise methods, which use instance 

semantic labels to learn hash functions, including Canonical 

Correlation Analysis Iterative Quantization (CCA-ITQ) [5], 

isotropic hashing (IsoHash) [6], Supervised Semantics Pres- 
———————————— 
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erving Deep Hashing (SSDH) [7],etc. (2)Pair-wise methods, 

which utilize the pair-wise label information between images, 

include Supervised Deep Hashing (SDH) [8], Convolutional 

Neural Networks Hashing (CNNH) [9] Deep Pairwise-

Supervised Hashing (DPSH) [10], Deep Hashing Network 

(DHN) [11], etc. (3) Triplet-wise methods, which  use the 

forms of triples for training model, contain  deep regularized 

similarity comparison Hashing (DRSCH) [12], deep semantic 

ranking hashing (DSRH) [13], etc.   

Although supervised hashing learning have achieved 

good performance in large-scale image retrieval tasks, most 

of the existing hashing methods only consider the similarity 

between images and the location information of in the 

retrieval ranking list is rarely discussed. Moreover, users 

always pay too much attention to the top results in query list, 

and do not get used to caring about those at the bottom of 

the ranking list in the content-based retrieval. So, it is critical 

to preserve similarity between images ranked at the top of 

the ranking list and query images in the content-based 

retrieval [14,15]. Meanwhile, the models mentioned above 

(e.g., classical deep convolutional network AlexNet) have 

semantic gaps mapping the high-dimensional feature vectors 

to low-dimensional hash codes when generating hash codes 

based on target images. 

In this paper, a novel deep hashing with preserving top 

images similarity based on acceleration strategy is proposed 

in this paper so as to generate compact binary codes and 

solve these problems we have discussed above. The overall 

framework of our model is shown in Fig.1. Firstly, we are 

inspired by [16] and optimize the internal structure of the 

classical deep convolutional network AlexNet to improve the 

feature representation ability of the network and produce 

high quality hash codes  compared with other networks . 

Optimized AlexNet is used to extract discriminative image 

representations and learn hash functions simultaneously. 

Secondly, the loss function based on acceleration strategy is 

designed to preserve similarity between images ranked at the 

top of the ranking list and query images in large-scale image 

retrieval. Thirdly, we train our deep hashing model in a 

batch-process fashion to cope with the large amount of 

stored images. Furthermore, experimental results show our 

framework exceeds several hashing methods. 

2. PROPOSED APPROACHE 
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2.1. Deep Architecture 
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Fig. 1. The overall framework of our model 

The classical deep convolutional neural network Alexnet 

consists of five convolutional layers, three pooling layers, 

and three fully connected layers [17]. Although we can 

increase the depth of network to reduce semantic gaps, it will 

also add complexity with training model. Therefore, we 

optimize pooling layers and fully connected layers of Alexnet 

to get discriminative middle-level feature descriptors. (1)The 

max-average pooling strategy is adopted to strengthen the 

local feature presentation ability. (2) Maxout activation [18] is 

used instead of Sigmoid or ReLu to fit the distribution of 

global features in fully connected layers. (3)The last fully 

connected layer is replaced by a novel hidden hashing layer 

to convert extracted image features into compact hash codes. 

2.1.1. Max-Average Pooling  

It is conductive to represent image feature that the key role 

for pooling is to get core features and discard the irrelevant 

features. The features after convolution often contain some 

location information (e.g., relative position, absolute position, 

etc.). When the distributions of image features are smooth 

and flat, max-pooling often discards relevant local spatial 

information to reduce image feature extraction and 

representation. In this case, the average pooling is often 

used without losing local relevant information [16]. The 

pooling operation in the paper is defined as follows . 

         1 2 1

1
( ) max

p

i ii
f v v v

p 
                             (1) 

Where 1 2 1=  , max iv represents the maximum 

pooling operation, 1

1 p

ii
v

p   represents the average pooling 

operation. 

In phase of training model, we hope our model can be very 

expressive for any input image. Therefore, we set 1 2 0.5= =   

to enhance the robustness of model. In phase of testing 

model, we set 1 2 0.5= =   to measure the saliency feature 

and the average feature as same importance with high-quality 

images as input; we set 1 0.3= and 2 0.7= to strengthen the 

importance of the average feature to reduce the impact of 

image noise on feature extraction and representation with 

low-quality images as input. In our experiments, CIFAR-10 is 

with low quality pixels while NUS-WIDE is with high quality 

pixels. 

2.1.2. Maxout Activation for Global Features  

Recent researches have shown that Maxout could fit any 

dimensional function compared with traditional activation 

functions [18]. For the given input data, Maxout is defined as 

follows. 

                             [1, ]
( ) maxi ij

j k
h x z


                                      (2) 

Where 
T

ij ij ijz x W b  , d m kW     and m kb   are 

parameters which needs to be learned. 

In our proposed model, Maxout with dropout operation, 

which could achieve excellent performance, is used in fully 

connected layer to fit the distribution of global features. 

Meanwhile, Maxout activation will increase network 

parameters. During our experiments in this paper, we reduce 

the number of nodes of FC6 and FC7 to 2048, as well reduce 

the dropout rate from 0.5 to 0.3 to achieve the retrieval 

efficiency. 

2.1.3. Deep Hash Functions 

Inspired by [19], we add a bypassing connection between 

the FC6 layer and the last hash layer to reduce the loss of 

information. Recent researches have shown that the features 

from FC7 are dependent on labels too much and have strong 

feature expression invariance, which is not conducive to 

capture subtle semantic features [13]. Therefore, hash layer 

in our model is connected with the FC6 and FC7 layers 

simultaneously to improve image feature presentation. The 

hash function is defined as follows. 

6 7( ; ) ( [ ( ); ( )])w w
T

fc fch x sign f x f x             (3) 

Where w represents the weights of hash layer, 

6 ( )fcf and 7 ( )fcf  respectively denote feature vectors from 

the outputs of FC6 layer and FC7 layer. For the sake of 

concision, bias terms and parameters of 

6 ( )fcf and 7 ( )fcf are omitted. We could compute 

1 2 2( , ) [ ( ; ), ( ; ), , ( ; )]K Kh x h x h x h x 1W w w w to get K-bit 

binary codes. 

2.2. Loss Function 

Most of the deep hashing methods  pay close attention to 

similarity between images without top similarity preserving. 

We introduce the loss function which makes images ranked 

in the top similar to the query images in the section. 

During training stage, we feed a group of images to our 

model each iteration, including the query image I , similar 

image 
+I  and dissimilar images 

-

1{ }n

k kI  , where n is the 

number of dissimilar images . Then we can obtain the 
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corresponding hash codes respectively, denoted 

as ( )b I , +( )b I  and -

1{ ( )}n

k kb I 
when original images as the 

inputs. Intuitively, the Hamming distance between ( )b I  

and +( )b I  can get closer than that between ( )b I  and 

-( )kb I for any {1, }k n [15]. Therefore, the “rank” of the 

similar image 
+I  with respect to query imageI  is defined as 

follows. 

           
1

( , ) {( ( ) ( ) - ( ) ( ) ) 0}
H H

n

k

k

R I I f b I b I b I b I  



            (4) 

Where 
H

denotes the Hamming space distance, f is the 

Boolean function. ( , )R I I 
represents the number of 

dissimilar images. Due to the images at the top of the ranking 

list similar to the query images, we defined the loss function 

as follows. 

                         

2
+

+
( ( , ))

( , )
Loss R I I

R I I




 


                        (5) 

Where parameter  controls the reduction rate of first 

derivative. Eq.(5) means the similarity in top of ranking list is 

more important than that in the bottom. According to Eq.(5), 
the object function is defined as follows. 

                   

2

+

1

( , )I I

L
Z R I I





 


                                (6) 

Where Z is the number of input image groups . We need 

to relax it as follows due to the non-differentiability of Eq.(3). 

( ) ( ( ))T
h hf I sigmoid w g I                               (7) 

      Where ( )g I  denotes feature vectors from the outputs of 

FC6 layer and FC7 layer. Then we can obtain a q-bit binary 

code by simple quantization ( ) ( ( ) 0.5)hb I sign f I  . 

Meanwhile, it is relaxed as follows by Sigmoid and L1-norm 

due to the non-differentiability of Eq.(4). 

1 1
1

( , ) ( ( ) ( ) - ( ) ( ) )
n

h h h h k

k

R I I sigmoid f I f I f I f I


  



       (8)

 

According to Eq.(6) and Eq.(8), the overall objective 

function  can be written as follows. Where W is the weights 

of our network. The third term of Eq.(9) is used to make each 

bit averaged over the training data to maximize the entropy of 

binary codes [20]. 
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3. LEARNING ALGORITHM 

3.1. Joint Optimization based on Acceleration  

We use Stochastic Gradient Descent to optimize network 

parameters in training process. Each mini-batch contains 

query image I , similar image 
+I  and dissimilar images 

-

1{ }n

k kI 
, and the gradients of the objective function L with 

respect to ( )hf I , ( )+

hf I and
1{ ({ } )}- n

h k kf I 
are as following. 
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Obviously,
 

( , )

( )h

R I I

f I





and 

( , )

( )+
h

R I I

f I





 is easy to be 

calculated. Since different samples could contain same image, 

we find that the overall gradient of the dissimilar images can 

be generated by calculating the gradient of each dissimilar 

image. For computing 
( , )

( )h d

R I I

f I









, we adopt the calculation 

methods for gradient to greatly reduce computation cost as 

shown in Eq.(13). 

1

( , ) ( , )
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n

h hik i

R I I R I I

f I f I

 



 

 


+ +

- -
=

                            
(13) 

Eq.(13) is very similar to traditional calculation method of 

loss function based on partial derivative. The only difference 

is that partial differential is calculated with respect to the 

outputs of all dissimilar images in the groups as follows 

Eq.(13).  

3.2. Batch-Process Fashion 

We implement the model training in a batch-process fashion 

to avoid loading all the data at once. The following steps are 

mainly included each iteration. Suppose that the training data 

contains K categories and each category includes O images. 

Firstly, we randomly select K categories randomly as query 

images. For each query image, we construct a fixed number 

of groups, in which the image with different label from query 

image is randomly selected from the remaining categories. In 

this way, the images distributed over the generated training 

samples are relatively centralized. Considering that the 

images and categories are randomly selected each iteration, 

our method can generate all possible groups with enough 

iterations.  
4. EXPERMENTS 

4.1. Datasets and Settings 

We validate our algorithm on CIFAR10 and NUS-WIDE 

datasets. The CIFAR10 dataset contains 60,000 32×32 color 

images of 10 classes [21]; The NUS-WIDE dataset consists 

of 269,648 images [22]. We select the subset of images 
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annotated with the 21 most frequently happened classes in 

NUS-WIDE dataset [23]. Training data is used to train model 

and the query image is searched within the query set by 

applying the leave-one-out [12]. In our experiments, network 

is initialized by the weights of AlexNet which has been 

trained on the ImageNet dataset. The parameters ,   and 

  are empirically set as 20, 0.01 and 0.1 respectively.

 

Table 1. mAP w.r.t. different number of bits on two datasets.  

Method CIFAR10(mAP) NUS-WIDE(mAP) 

 16bits 24bits 32bits 48bits 16bits 24bits 32bits 48bits 

Ours 0.819 0.832 0.838 0.846 0.782 0.789 0.792 0.801 

DHTSP-F [15] 0.812 0.826 0.833 0.835 0.766 0.779 0.783 0.786 

DTSPH [14][15] 0.782 0.800 0.803 0.805 0.770 0.786 0.788 0.789 

DPSH [10] 0.742 0.764 0.765 0.770 0.696 0.711 0.726 0.730 

DRSCH [12] 0.613 0.622 0.631 0.631 0.618 0.622 0.623 0.628 

DSRH [13] 0.608 0.617 0.617 0.618 0.609 0.618. 0.621 0.631 

SDH [8] 0.384 0.412 0.405 0.432 0.530 0.535 0.540 0.536 
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Fig 2. The results of comparison methods on the CIFAR10 dataset 

16 24 32 48 64

0.55

0.60

0.65

0.70

0.75

0.80

0.85

a

P
re

ci
si

on
@

to
p 

50
0

Number of bits    
0 100 200 300 400 500 600 700 800 900 1000

0.55

0.60

0.65

0.70

0.75

0.80

0.85

P
re

ci
si

on
@

to
p 

N

Number of returned images

b

   
16 24 32 48 64

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85c

P
re

ci
si

on
(H

am
m

.d
is

t.
<

=
2)

Number of bits

 SDH

 DSRH

 DRSCH

 DTSPH

 DHTSP-F

 Ours

 
Fig 3. The results of comparison methods on the NUS-WIDE dataset 
 

4.2. Experimental Results 

We compare our method with five state-of-the-art hashing 

methods, including SDH, DRSH, DRSCH, DTSPH, DHTSP-F 

by four evaluation metrics , which are mean average precision 

(Table 1), precision at top 500 samples w.r.t. different code 

lengths (Section a in Fig.2. or Fig.3), precision curves with 64 

bits wr.t. different numbers of top returned samples(Section 

b in Fig.2. or Fig.3), and precision within Hamming distance 

2(Section c in Fig.2. or Fig.3). 

Performance on CIFAR10 dataset. The experimental 

results as presented in Table 1 show that mAP of our model 

exceed that of other deep hash models. The mPA from 

calculation by using the proposed model is 0.819, 0.832, 

0.838, 0.846 with hashing code lengths from 16 to 48 bits as 

shown in Table 1 respectively. The experimental results for 

other three evaluation metrics show that our model achieves 

promising performance as shown in Fig.2. 

Performance on NUS-WIDE dataset. For NUS-WIDE 

dataset is very large, we calculate mAP values within the top 

50,000 returned samples. In particular, mAP of our model 

increase from 0.770 to 0.782 with 16-bits hash code. 

Experimental results on other three evaluation metrics shown 

in Fig.3 introduce that our model achieve more performance 

than other hash model which has been discussed in large 

scale image retrieval tasks. 

5. CONCLUSION 

In the paper, we propose a novel end-to-end deep hashing 

model with preserving the images on the top of the result list 

similar to query images to improve performance of image 

retrieval effectively. The optimized AlexNet is used to extract 

better feature descriptors and generate the high-quality hash 

codes. Experimental results show that our method 

outperform several state-of-the-art deep hashing methods. 
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