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ABSTRACT

The task of Language-Based Image Editing (LBIE) aims
at generating a target image by editing the source image based
on the given language description. The main challenge of
LBIE is to disentangle the semantics in image and text and
then combine them to generate realistic images. Therefore,
the editing performance is heavily dependent on the learned
representation. In this work, conditional generative adversar-
ial network (cGAN) is utilized for LBIE. We find that existing
conditioning methods in cGAN lack of representation power
as they cannot learn the second-order correlation between two
conditioning vectors. To solve this problem, we propose an
improved conditional layer named Bilinear Residual Layer
(BRL) to learning more powerful representations for LBIE
task. Qualitative and quantitative comparisons demonstrate
that our method can generate images with higher quality when
compared to previous LBIE techniques.

Index Terms— Generative adversarial networks, Bilin-
ear, Language-based image editing

1. INTRODUCTION

The task of Language-Based Image Editing (LBIE) aims at
manipulating a source image semantically to match the given
description well. LBIE has seen applications to domains as
diverse as Computer-Aided Design (CAD), Fashion Genera-
tion and Virtual Reality (VR) [1]. As illustrated in Fig 1, us-
ing LBIE technique, one can automatically modify the color,
texture or style for a given design drawing by language in-
structions instead of the traditional complex processes.

Nevertheless, LBIE is still challenging due to the follow-
ing two difficulties: i). the model should find the areas in
image which are relevant to the given text description; ii).
the relations of disentangled semantics in image and text de-
scription should be learned for a better generation of realis-
tic image. To tackle these problems, several methods have
been proposed [1, 2, 3, 4, 5], and most of them utilize the
generative models, e.g., GANs [6]. [1, 2] divide LBIE into
two subtasks: language-based image segmentation and image
generation. Specifically, Zhu et al. [2] performes LBIE to “re-
dress” the person with the given outfit description, while at the

The lady wore a white 
sleeveless dress

+

Fig. 1. LBIE for fashion generation.

same time keeping the wearer and his posture or expression
unchanged. They use a two stages GAN that outputs a seman-
tic segmentation map as intermediate step, which is further
used to render the final image with precise regions and tex-
tures at the second step. Some other approaches [3, 4, 5] can
achieve LBIE without any segmentation map or explicit spa-
tial constraints by adversarially train a conditional GAN [7].
Among them, [5] is the seminal work and it uses concatena-
tion operation to condition the image generation process with
text embeddings. [3, 4] follow up this framework, and replace
the concatenation operation with Feature-wise Linear Modu-
lation (FiLM), which is a more efficient and powerful method
as a generalization of concatenation.

In this work, we first theoretically analyse these works
which edit the image based on fused visual-text representa-
tions using different conditioning methods. We found that
all these conditioning methods can be modeled by a univer-
sal form of bilinear transformation based on [8]. However, all
these methods are lack of representation power as they cannot
learn the second-order correlation between two conditioning
embeddings. To solve this problem, we present an improved
conditoning method named Bilinear Residual Layer which
can strike a happy compromise between representation ef-
fectiveness and model efficiency. We have both theoretically
and experimentally proved that the Bilinear Residual Layer
can provide richer representations than previous approaches.
Quantitative and qualitative results on Caltech-200 bird [9],
Oxford-102 flower [10] and Fashion Synthesis datasets [2]
suggest that our approach can generate images with higher
quality when compared to previous LBIE techniques.

2. METHOD

In this section, we first theoretically analyse existing condi-
tioning methods in cGANs. Then an improved conditional
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layer called Bilinear Residual Layer (BRL) is proposed in
Sec 2.2. Finally, we introduce overall framework in Sec 2.3.

2.1. Overview of conditioning methods

Conditioning is a general-purpose operation and can be used
for different tasks, e.g., conditional image generation [11, 12]
and cross-modality distillation [13]. The most commonly
used approach in conditional GANs is concatenation. For-
mally, denote If ∈ RD and Ic ∈ RD′

as the output of
previous layer and conditioning feature respectively, where
D and D′ are the dimensionality of features. The concated
representation [If Ic] ∈ RD+D′

can be further encoded by a
matrix W = [Wf ;Wc], Wf ∈ RD×O and Wc ∈ RD′×O are
the corresponding weights for If and Ic. O is the output di-
mension. Formally, we can get the following transformation:

Io = [If Ic] [Wf ;Wc] = IfWf + IcWc (1)

where Io is the output tensor. Equation 1 suggests that con-
catenation based conditioning method amounts to adding a
feature-wise bias on the unconditional output IfWf . There-
fore, some other approaches [14, 15] suggest to add condi-
tional bias directly instead of concatenation.

Recently, some works [16] have validated that deep mod-
els could mimic the human attention mechanism by gating
each feature using a value between 0 and 1. Inspired by this,
Perez et al. [17] proposes a more general conditioning method
named feature-wise linear modulation (FiLM), which rescales
the features by adding multiplicative interactions:

Io = (IfWf )� (IcW c) + IcWc (2)

W c ∈ RD′×O is the weight for learning rescaling coeffi-
cients. From this formulation, we can conclude that concate-
nation is a special case of FiLM when IcW c = 1, where 1
is a matrix of ones. FiLM has shown its superiority over con-
ventional concatenation method and has been widely applied
to the multimodal interaction.

However, concatenation and FiLM only apply a linear
transformation between the input and conditional features.
In this work, we go a step further and generalize these lin-
ear methods to the more powerful bilinear version, which can
provide richer representations than linear models by learning
the second-order interaction. In bilinear model, the ith feature
in output Io can be calculated as

Ioi = IfWiI
T
c (3)

Wi ∈ RD×D′
is a weight matrix for the output feature Ioi .

Interestingly, we have found FiLM can be presented by bilin-
ear transformations. Denote the weights corresponding to the
ith output feature in Wf , W c and Wc as wfi , wci and wci .
The FiLM transformation for Ioi = (Ifwfi)(Icwci) + Icwci

can be represented by

If (wfiw
T
ci +Wi

′︸ ︷︷ ︸
Wi

)ITc (4)

where IfWi
′ = wT

ci , Wi
′ can be constructed by randomly

choosing a nonzero element Ifk in If , we have

Wi
′ =



0 0 0 · · ·
...

...
wci1

Ifk

wci2

Ifk
· · · wc

iD′
Ifk

...
...

0 0 0 · · ·


(5)

where elements in the Wi
′ are 0 except for the kth row.

Obviously, the rank of matrix wfiw
T
ci and Wi

′ are both 1.
So we have Rank(Wi) ≤ 2∗. The constructed formulation
indicates that FiLM is equivalent to bilinear transformation
with transformation matrix Wi is sparse and has the rank
no greater than 2. From a theoretical perspective, it illus-
trates that bilinear transformations can provide more fine-
grained conditioning representations than the concatenation
and FiLM.

2.2. Bilinear Residual Layer

We propose Bilinear Residual Layer (BRL) for learning con-
ditional bilinear representations as illustrated in dashed box
of Fig 2. Similar to FiLM, we add shortcuts to guarantee
the model’s capability to learn identical mapping. As a con-
sequence, our bilinear residual layer can automaticly decide
whether or not the model needs to incorporate the condition-
ing information in the later layers.

However, the representational power of bilinear features
comes with the cost of very high-dimensional model parame-
ters , which require substantial computing and large quantities
of training data to fit [18]. For example, the dimensionality of
W is |D × D′ × O| which is cubical expansion. To reduce
the dimensionality of model parameters, our approach adopts
a low-rank bilinear method [19] to reduce the rank of Wi.
Based on this idea, Ioi can be rewritten as follows:

Ioi = IfWiI
T
c = IfUiVi

T ITc = IfUi � IcVi (6)

where Ui ∈ RD×d and Vi ∈ RD′×d are the decomposed
submatrices and they restrict the rank of Wi to be at most
d ≤ min(D,D′). Then the final feature vector Io can be
projected by P ∈ RO×d as follows:

Io = P(IfU� IcV) (7)

Moreover, Our bilinear residual layer is a general condi-
tion layer, and it is applicable not only for LBIE, but also for
other conditional models or applications, e.g., text-to-image
generation [20]. In following sections, we will present the
overall framework of our work and we denote the bilinear
residual layer as F for convenience.

∗Properties of rank: https://en.wikipedia.org/wiki/Rank (linear algebra)
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Fig. 2. Overview of our network architecture. Detail of our
bilinear residual layer is presented in the dashed box.

2.3. Overall framework

We follow the work of Dong et al. [5] which utilizes the
cGAN to learn the target mapping conditioning based on
image and text description. As shown in Fig 2, the network
consists of a generator G and a discriminator D. The gen-
erator has three modules: encoding module, fusing module
and decoding module. Encoding module contains pre-trained
encoders ϕ and φdown, and they are used to extract text and
image features respectively. We adopt the procedure in [21]
to pre-train the text encoder ϕ and use parameters of conv1-4
layers in VGG16 as the feature extractor φdown for image.
The text and image features are then fed in the following
fusing module, which can be seen as a conditioning layer
to compromise the semantics of multiple modalities. The
final decoding module φup upsamples the fused feature to a
high-resolution images. Finally, the discriminator is a clas-
sifier which takes the generated image and text embeddings
as input and output the probability whether the description
matches the image.

Formally, given an original image-text pair <x, t>, t is
the text matching with the image x. Suppose that we use de-
scription text t̂ to manipulate the image x, typically t̂ is a text
relevant to x. The generator can transform the image accord-
ing to text embedding ϕ(t̂) and output

G(x, ϕ(t̂)) = φup(F(φdown(x), ϕ(t̂))) (8)

the discriminator D is trained to distinguish semantically dif-
ferentiated image-text pairs. To this end, we need to take a
mismatching text t as negative sample. Original pair <x, t>,

current editing pair <x, t̂> and negative pair <x, t> are fed
into discriminator D to minimizing

LD = E(x,t)∼pdata

[
D(x, ϕ(t))2

]
+ E(x,t)∼pdata

[
(D(x, ϕ(t))− 1)2

]
+ E(x,t̂)∼pdata

[
D(G(x, ϕ(t̂)), ϕ(t̂))2

] (9)

here the objective of the first and second terms is to classify
negative and original real-world image-text pairs. The third
term makes D to identify the synthesized image with its edit-
ing text as mismatching as possible. Alternately to the train-
ing of D, the generator G is trained to generate more seman-
tically similar images with the editing text t̂:

LG = E(x,t̂)∼pdata

[
(D(G(x, ϕ(t̂)), ϕ(t̂))− 1)2

]
(10)

In this work, t and t̂ are selected from the text descriptions of
other images in the dataset.

3. EXPERIMENTS

We conduct experiments on Caltech-200 bird dataset [9],
Oxford-102 flower dataset [10] and Fashion Synthesis dataset
[2]. The bird dataset has 11,788 images with 200 classes
of birds. We split it to 160 training classes and 40 testing
classes. The flower dataset has 8,189 images with 102 classes
of flowers, and we split it to 82 training classes and 20 test-
ing classes. The fashion dataset has much more classes with
78,979 images totally. We choose 3200 classes from 4119 for
training and the rest for testing.

3.1. Implementation details

The source code has been released†. Our encoder ϕ for text
descriptions is a recurrent network. Given the pair of image
and text <x, t>, the method in [21] is used to pre-train the
text encoder to minimize the pair-wise ranking loss. This pre-
trained text encoder encodes the text description t into visual-
semantic text representation ϕ(t), which will be further used
in the adversarial training process as detailed in Sec 2.3.

For image encoder, it receives images with size of 64×64
as input and output features with dimension of 16×16×512.
Text encoder encodes descriptions to the text embeddings
with dimensionality of 128. Our fusing module consists of 4
(i.e., N in the Fig. 2) bilinear residual layers. To implement
the low-rank bilinear method, we duplicate the text embed-
dings to be of dimension 16×16×128, so as to keep the same
spatial size with image features. Then the dimensions of
both text and image features are reduced to d (cf. Section
2.2) by using 1×1 convolutions. The decoding module con-
sists of several upsampling layers that transform the learned
representations into 64×64 images. For the discriminator,
we first apply convolutional layers to encode the images
†https://github.com/vtddggg/BilinearGAN for LBIE
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blue short-sleeved
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This little bird is mostly 
white with a black 
superciliary and primary.

This flower has petals 
that are yellow at the 
edges and spotted
orange near the center.

Original image Baseline Our method (Bil-R256)FiLMEditing text

Fig. 3. Qualitative comparisons.

into feature representations. We then concatenate the image
representation with text embeddings, then apply two convo-
lutional layers to produce final probabilities. Note that we use
concatenation to conditioning for limiting the discriminator
capability to prevent the mode collapse effect.

To train the generator and discriminator, we adopt the
Adam optimizer with momentum of 0.5. The learning rate
is 0.0002. We set batch size to 64 for all three experiments
and number of iterative epochs to 600 for birds and flowers
synthesis, 200 for fashion synthesis. The parameters of VGG
part were fixed during training the generator. The training
takes about 1 day to converge on a single Tesla P100 GPU.

3.2. Qualitative comparison

We compare our proposed model with the baseline [5] (i.e.,
concatenation) and FiLM on three datasets. The results are
shown in Fig 3. Baseline method fails to transform the detail
attributes based on the given description because the learned
representations are not powerful as it does not contain enough
detail information. For example, the generated images by
baseline method in editing flowers demonstrate the model has
learned the colors of yellow and orange, but it is unaware of
the location of these colors. Meanwhile, when original im-
age has a complex background (e.g. 3th and 4th samples in
first row), the model will fall into mode collapse and output
the same meaningless image. On the contrary, our method
can capture the specific semantic changes in detail, which is
attribute to our richer bilinear representations. It correctly dis-
entangles semantically related objects from some messy im-
ages and prevent the occurrence of mode collapse. As a con-
sequence, our approach can successfully generate meaningful
images subject to the text description.

3.3. Quantitative comparison

We choose inception score (IS) for quantitative evaluation.
Inception score is a well-known metric for evaluating GANs.
IS can be computed by IS = exp(ExDKL(p(y|x)‖p(y))),
where x denotes one generated sample, and y is the label pre-
dicted by the inception model. The better models which gen-

Methods Caltech bird Oxford flower Fashion
Baseline 1.92±0.05 5.03±0.62 8.65±1.33
FiLM [4] 2.59±0.11 4.83±0.48 8.78±1.43
Bil-R2 2.60±0.11 4.93±0.39 9.30±1.48
Bil-R64 2.63±0.17 5.40±0.62 10.94±2.28

Bil-R256 2.76±0.08 6.26±0.44 11.63±2.15

Table 1. The comparison of IS score of methods

erate diverse and meaningful images can get larger inception
score. In this experiment, we use the test dataset for evalua-
tion. We first finetune the inception model with test images
for classification. Then, for every test class, we randomly
choose an image and text description (e.g. if test dataset has
40 classes, 40 images and 40 descriptions are selected). The
images are generated by inputting every pair of images and
descriptions (e.g. 40 images and 40 descriptions can generate
40×40 edited images).

The results are shown in Table 1. To explore the influ-
ence of rank constraint d, we set d = 2, 64, 256 and get three
variants: Bil-R2, Bil-R64 and Bil-R256. The Bil-R256 gets
the highest IS in all three tasks. Interestingly, the baseline
method has higher IS than FiLM on Oxford flower dataset
because flower editing is simple and is not very dependent on
the power of learned representation. For more complicated
bird and fashion editings, our method gets the highest IS and
achieves better performance with the increasing of d. Experi-
mental result suggests that the learned bilinear representation
is more powerful and do help to generate images with higher
quality.

4. CONCLUSION

In this work, we propose a conditional GAN based encoder-
decoder architecture to semantically manipulate images by
text descriptions. A general condition layer called Bilinear
Residual Layer (BRL) is proposed to learn more powerful
bilinear representations for LBIE. BRL is also applicable
for other common conditional tasks. Our evaluation results
on Caltech-200 bird dataset, Oxford-102 flower dataset and
Fashion Synthesis dataset achieve plausible effects and out-
perform the state-of-art methods on LBIE.

2050



5. REFERENCES

[1] Jianbo Chen, Yelong Shen, Jianfeng Gao, Jingjing
Liu, and Xiaodong Liu, “Language-based image edit-
ing with recurrent attentive models,” arXiv preprint
arXiv:1711.06288, 2017.

[2] Shizhan Zhu, Sanja Fidler, Raquel Urtasun, Dahua Lin,
and Chen Change Loy, “Be your own prada: Fashion
synthesis with structural coherence,” in Computer Vi-
sion (ICCV), 2017 IEEE International Conference on.
IEEE, 2017, pp. 1689–1697.

[3] Varun Manjunatha, Mohit Iyyer, Jordan Boyd-Graber,
and Larry Davis, “Learning to color from language,”
in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2
(Short Papers), 2018, vol. 2, pp. 764–769.
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