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ABSTRACT

Deep learning has revolutionized many computer vision
fields in the last few years, including learning-based im-
age compression. In this paper, we propose a deep semantic
segmentation-based layered image compression (DSSLIC)
framework in which the segmentation map of the input image
is obtained and encoded as the base layer of the bit-stream. A
compact representation of the input image is also generated
and encoded as the first enhancement layer. The segmen-
tation map and the compact version of the image are then
employed to obtain a coarse reconstruction of the image.
The residual between the input and the coarse reconstruc-
tion is additionally encoded as another enhancement layer.
Experimental results show that the proposed framework out-
performs the H.265/HEVC-based BPG and other codecs in
both PSNR and MS-SSIM metrics in RGB domain. Besides,
since semantic map is included in the bit-stream, the proposed
scheme can facilitate many other tasks such as image search
and object-based adaptive image compression1.

Index Terms— deep learning, semantic segmentation,
image compression, generative adversarial networks

1. INTRODUCTION AND PREVIOUS WORKS

Since 2012, deep learning (DL) has revolutionized many
computer vision fields such as image classification, object
detection, and face recognition. In the last couple of years,
it has also made some impacts to the well-studied topic of
image compression, and in some cases has achieved better
performance than JPEG2000 and the H.265/HEVC-based
BPG image codec [1, 2, 3, 4, 5, 6, 7, 8, 9], making it a very
promising tool for the next-generation image compression.

Various learning-based image compression frameworks
have been proposed. In [1, 2], long short-term memory
(LSTM)-based recurrent neural networks (RNNs) were used
to extract binary representations, which were then com-
pressed with entropy coding. Johnston et al. [3] utilized
structural similarity (SSIM) loss [10] and spatially adaptive
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1The source code of the paper: https://github.com/makbari7/DSSLIC

Fig. 1. The overall framework of the proposed deep seman-
tic segmentation-based layered image compression (DSSLIC)
codec.

bit allocation to further improve the performance. In [4], a
scheme that involved a generalized divisive normalization
(GDN)-based nonlinear analysis transform, a uniform quan-
tizer, and a nonlinear synthesis transform were developed.
Theis et al. [5] proposed a compressive autoencoder (AE)
where the quantization was replaced by a smooth approxima-
tion, and a scaling approach was used to get different rates.
In [6], a soft-to-hard vector quantization approach was intro-
duced, and a unified formulation was developed for image
compression.

Recently, there have also been some efforts in combining
some computer vision tasks and image compression in one
framework. In [11, 12], the authors tried to use the feature
maps from learning-based image compression to help other
tasks such as image classification and semantic segmentation
although the results from other tasks were not used to help the
compression part. In [9], a segmentation map-based image
synthesis model was proposed, which targeted extremely low
bit rates (< 0.1 bits/pixel), and used synthesized images for
non-important regions.

An advantage of DL is that it can extract much more ac-
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curate segmentation map from a given image than traditional
methods [13]. Recently, it was further shown that DL can
even synthesize a high-quality image using only a segmenta-
tion map as input [14], thanks to the generative adversarial
networks (GAN) [15]. This suggests the possibility of devel-
oping efficient image compression using DL-based semantic
segmentation and the associated image synthesis.

In this paper, we employ GAN to propose a deep semantic
segmentation-based layered image compression (DSSLIC)
framework as shown in Figure 1. The idea of seman-
tic segmentation-based compression was already studied
in MPEG-4 object-based video coding in the 1990’s [16].
However, due to the lack of high-quality and fast segmenta-
tion methods, object-based image/video coding has not been
widely adopted. Thanks to the rapid development of DL
algorithms and hardware, it is now the time to revisit this
approach.

In our approach, the segmentation map of the input image
is extracted to be losslessly encoded as the base layer of the
bit-stream. Next, the input image and the segmentation map
are used to obtain a low-dimensional compact representation
of the input, which is encoded into the bit-stream as the first
and main enhancement layer. The compact image and the seg-
mentation map are then used to obtain a coarse reconstruction
of the image. The residual between the input and the coarse
reconstruction is encoded as the second enhancement layer.
To improve the quality, the synthesized image from the seg-
mentation map is designed to be a residual itself, which aims
to compensate the difference between the upsampled compact
image and the input image. Therefore, the proposed scheme
includes three layers of information.

Experimental results in the RGB (4:4:4) domain show that
the proposed framework outperforms the BPG codec [17] in
both PSNR and multi-scale structural similarity index (MS-
SSIM) [18] metrics across a large range of bit rates, and is
much better than JPEG, JPEG2000, and WebP [19]. More-
over, since segmentation map is included in the bit-stream,
the proposed scheme can facilitate many other tasks such as
image search and object-based adaptive image compression.

2. DEEP SEMANTIC SEGMENTATION-BASED
LAYERED IMAGE COMPRESSION (DSSLIC)

The overall framework of the DSSLIC codec is shown in Fig.
1. The encoder includes three DL networks: Segmentation
Net, Compact Net, and Fine Net, respectively denoted by SN ,
CN , and FN . The semantic map s of the input image x is
first obtained using SN . In this paper, a pre-trained PSPNet
proposed in [13] is used as SN . To help image synthesis,
a side information is added to FN , which is obtained from a
low-dimensional version c of the original image. In this paper,
both s and c are losslessly encoded using the FLIF codec [20],
which is a state-of-the-art lossless image codec.

Given the segmentation map s and compact image c, the

RecNet part tries to obtain a high-quality reconstruction of
the input image. Inside the RecNet, c is first upsampled,
which, together with s, is fed into FN . FN is trained to
learn the missing fine information of the upsampled version of
c with respect to the input image. After adding the upsampled
version of c and the FN ’s output f , we get a better estimate
of the input. In our scheme, if the SN fails to assign any
label to an area, the FN will ignore the semantic input and
only reconstruct the image from c, which can still get good
results. Therefore, our scheme is applicable to all general
images. The residual r between the input and the estimate is
then obtained and encoded by a lossy codec. In order to deal
with negative values, the residual image r is rescaled to [0,
255] with min-max normalization before encoding. The min
and max values are also sent to decoder for inverse scaling. In
this paper, the H.265/HEVC intra coding-based BPG codec
is used [17], which is state-of-the-art in lossy coding. As a
result, in our scheme, the segmentation map s serves as the
base layer, and the compact image c and the residual r are
respectively the first and second enhancement layers.

At the decoder side, the segmentation map and compact
representation are decoded to be used by RecNet to get an
estimate of the input image. The output of RecNet is then
added to the decoded residual image to get the final recon-
struction x̃.

The architectures of the CN (proposed in this work) and
FN (modified from [14]) networks are respectively defined
as {c64, c128, c256, c512, c3, tanh} and {c64, c128, c256, c512, 9×
r512, u256, u128, u64, c3, tanh}, where ck denotes a 3×3 con-
volution layer (with k filters and stride one) followed by in-
stance normalization and ReLU. The filter size for the first
and last layers is 7×7; rk is a residual block containing
reflection padding and two 3×3 convolution layers (with k
filters) followed by instance normalization; and uk is a 3×3
fractional-strided-convolution layer (with k filters and stride
1
2 ) followed by instance normalization and ReLU.

Inspired by [14], for the adversarial training of the pro-
posed model, two discriminators denoted by D1 and D2 op-
erating at two different image scales are used in this work. D1

operates at the original scale and has a more global view of
the image. Thus, the generator can be guided to synthesize
fine details in the image. On the other hand, D2 operates with
2× down-sampled images, leading to coarse information in
the synthesized image. Both discriminators have the follow-
ing architecture: {C64, C128, C256, C512}, where Ck denotes
4×4 convolution layers with k filters and stride 2 followed by
instance normalization and LeakyReLU. In order to produce a
1-D output, a convolution layer with one filter is utilized after
the last layer of the discriminator.

2.1. Formulation and Objective Functions

Let x ∈ Rh×w×k be the original image, the corresponding
segmentation map s ∈ Zh×w and the compact representation
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c ∈ R
h
α×

w
α×k are generated as follows: s = SN(x), c =

CN(s, x).
Conditioned on s and the upscaled c, denoted by c′ ∈

Rh×w×k, FN (our GAN generator) reconstructs the fine in-
formation image, denoted by f ∈ Rh×w×k, which is then
added to c′ to get the estimate of the input: x′ = c′ + f ,
where f = FN(s, c′).

The error between x and x′ is measured using a combina-
tion of different losses including L1, LSSIM , LDIS , LV GG,
and GAN losses. The L1-norm loss (least absolute errors) is
defined as: L1 = 2λ‖x− x′‖1. It has been shown that com-
bining pixel-wise losses such as L1 with SSIM loss can sig-
nificantly improve the perceptual quality of the reconstructed
images [21]. As a result, we also utilize the SSIM loss de-
noted by LSSIM in our work.

To stabilize the training of the generator and produce nat-
ural statistics, two perceptual feature-matching losses based
on the discriminator and VGG networks [22] are employed.
The discriminator-based loss is calculated as:

LDIS = λ
∑
d=1,2

n∑
i=1

1

Ni
‖D(i)

d (s, c′, x)−D(i)
d (s, c′, x′)‖

1
,

(1)
where D(i)

d denotes the features extracted from the i-th inter-
mediate layer of the discriminator network Dd (with n layers
and Ni number of elements in each layer). Similar to [7], a
pre-trained VGG network with m layers and Mj elements in
each layer is used to construct the VGG perceptual loss as in
below:

LV GG = λ

m∑
j=1

1

Mj
‖V (j)(x)− V (j)(x′)‖1, (2)

where Vj represents the features extracted from the j-th layer
of VGG. In order to distinguish the real training image x from
the reconstructed image x′, given s and c′, the following ob-
jective function is minimized by the discriminator Dd:

LD = −
∑
d=1,2

(logDd(s, c
′, x)+log(1−Dd(s, c

′, x′))), (3)

while the generator (FN in this work) tries to fool Dd by
minimizing −

∑
d=1,2 logDd(s, c

′, x′). The final generator
loss including all the reconstruction and perceptual losses is
then defined as:

LG = −
∑
d=1,2

logDd(s, c
′, x′)+L1+LSSIM+LDIS+LV GG.

(4)
Finally, our goal is to minimize the hybrid loss function

L = LD + LG.

3. EXPERIMENTS

The ADE20K dataset with 150 semantic labels [23] is used
for training the proposed model. The images with at least

Fig. 2. Comparison results on ADE20K test set.

Fig. 3. Comparison results on Kodak image set.

512 pixels in height or width are used (9272 images in total).
All images are rescaled to h = 256 and w = 256 to have
a fixed size for training. Note that no resizing is needed for
the test images since the model can work with any size at the
testing time. We set the downsampling factor α = 8 to get the
compact representation of size 32×32×3. We also consider
the weight λ = 10 for L1, LDIS , and LV GG.

All models were jointly trained for 150 epochs with mini-
batch stochastic gradient descent (SGD) and a mini-batch size
of 8. The Adam solver with learning rate of 0.0002 was
used, which is fixed for the first 100 epochs, but gradually
decreases to zero for the next 50 epochs. Perceptual feature-
matching losses usually guide the generator towards more
synthesized textures in the predicted images, which causes
a slightly higher pixel-wise reconstruction error, especially in
the last epochs. To handle this issue, we did not consider the
perceptual LD and LV GG losses in the generator loss for the
last 50 epochs. All the SN , CN , FN , and the discrimina-
tor networks proposed in this work are trained in the RGB
domain.

We compare the performance of the proposed DSSLIC
scheme with JPEG, JPEG2000, WebP, and the BPG codec
[17], which is state-of-the-art in lossy image compression.
Since the networks are trained for RGB images, we encode
all images using RGB (4:4:4) format in different codecs for
fair comparison. We use both PSNR and MS-SSIM [18] as
the evaluation metric in this experiment. In this experiment,
we encode the RGB components of the residual image r using
lossy BPG codec with different quantization values.

The results of the ADE20K test set (averaged over 50 ran-
dom test images not included in the training set) are given
in Figure 2. To demonstrate the generalization capability of
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Original (with seg map)

-

DSSLIC (ours)

0.59 bpp, 31.38 dB, 0.988

BPG

0.59 bpp, 27.31 dB, 0.984

WebP

0.60 bpp, 25.43 dB, 0.979

JPEG2000

0.60 bpp, 25.12 dB, 0.972

JPEG

0.61 bpp, 23.63 dB, 0.973

Fig. 4. ADE20K visual example (BPP, PSNR, MS-SSIM)

Original (with seg map)

-

DSSLIC (ours)

0.69 bpp, 32.54 dB, 0.982

BPG

0.71 bpp, 27.86 dB, 0.957

WebP

0.71 bpp, 26.01 dB, 0.952

JPEG2000

0.71 bpp, 26.71 dB, 0.942

JPEG

0.72 bpp, 24.77 dB, 0.958

Fig. 5. Kodak visual example (BPP, PSNR, MS-SSIM)

the scheme, the ADE20K-trained model is also applied to
the classical Kodak dataset (including 24 test images) and re-
ported in Figure 3. As shown in the figures, our method gives
better PSNR and MS-SSIM than other codecs. In particular,
the PSNR gains over BPG can be 2-4 dB in the middle bitrate
ranges. Some visual examples from ADE20K and Kodak test
sets are given in Figures 4 and 5.

Figure 6 and Table 1 report some ablation studies of dif-
ferent configurations, all are obtained without using the BPG-
based residual coding, including: upComp: the results are
obtained without considering the FN network in the pipeline,
i.e., x′ = c′ (the upsampled compact image only); noSeg: the
segmentation maps are not considered in neither CN nor FN
networks, i.e., x′ = c′ + f where c′ is the upsampled version
of c = CN(x), and f = FN(c′); withSeg: all the DSSLIC

Original

PSNR, MS-SSIM

upComp

18.01 dB, 0.73

synth

23.68 dB, 0.84

noSeg

22.18 dB, 0.86

withSeg

25.09 dB, 0.88

Fig. 6. Visual comparison of different scenarios at 0.08 BPP.

Table 1. Results of different scenarios (without BPG-based
residual coding).

ADE20K Kodak
upComp synth noSeg withSeg upComp synth noSeg withSeg

BPP 0.095 0.092 0.08 0.095 0.087 0.088 0.080 0.087
PSNR 17.50 21.91 22.24 23.11 17.77 20.97 21.46 21.91
MS-SSIM 0.759 0.887 0.905 0.914 0.738 0.858 0.887 0.891

components shown in Figure 1 are used in this configuration
(except BPG-based residual coding); synth:, the settings in
this configuration is the same as withSeg except that the per-
ceptual losses LV GG and LDIS are considered in all training
epochs. The poor performance of using only the upsampled
compact images in upComp shows the importance of FN
in predicting the missing fine information, which is also vi-
sually obvious in Figure 6. Considering perceptual losses in
all training epochs (synth) leads to sharper and perceptually
more natural images, but the PSNR is much lower. The re-
sults with segmentation maps (withSeg) provide slightly bet-
ter PSNR than noSeg although the visual gain is more pro-
nounced, e.g., the dark wall in Figure 6.

In overall, our approach preserves more details and pro-
vides results with higher visual quality compared to BPG and
other codecs, which demonstrates the great potential of DL-
based image compression. In addition, the built-in seman-
tic map enables some new applications such as fast content-
based image retrieval, object-based video coding, and region-
of-interest coding.

4. CONCLUSION

In this paper, we proposed a deep semantic segmentation-
based layered image compression (DSSLIC) framework in
which the semantic map of the input image was used to syn-
thesize the image, and a compact representation and a residual
were encoded as enhancement layers in the bit-stream. Ex-
perimental results showed that the proposed framework out-
performs the H.265/HEVC-based BPG and the other standard
codecs in both PSNR and MS-SSIM metrics in RGB (4:4:4)
domain. In addition, since semantic map is included in the bit-
stream, the proposed scheme can facilitate many other tasks
such as image search and object-based adaptive image com-
pression. The proposed scheme opens up many future topics,
for example, modifying the scheme for YUV-coded images
and applying the framework for other tasks.
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