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ABSTRACT

We propose a novel concept of Deep Part Embeddings (DPEs),
which can be used to learn new Convolutional Neural Net-
works (CNNs) for different classes. We define DPE as a neu-
ron of a trained CNN along with its network of filter activa-
tions that is interpretable as a part of a class that the neuron
contributes to. Given a new class C, we explore the idea of
combining different DPEs that intuitively constitute C, from
trained CNNs (not on C), into a network that learns the class
C with few training samples. An important application of our
proposed framework is the ability to modify a CNN trained
on n classes to learn a new class with limited training data
without significantly affecting its performance on the n classes.
We visually illustrate the different network architectures and
extensively evaluate their performance against the baselines.

Index Terms— Model Learning, DPE, Activation, CNN

1. INTRODUCTION

Convolutional Neural Networks rely on training millions of
parameters from large amount of labeled data and computa-
tional resources which pose a problem for training a new CNN
from scratch. To address this, different methods have been
proposed in literature that make use of transfer learning [1–6],
knowledge distillation [7, 8], filter pruning [9, 10], life long
learning [11–13] etc. to accelerate re-usability of trained CNNs.
However, the final network architecture achieved from these
methods still operate as a "black-box" with little understanding
of the features it learns. Attempts have been made to under-
stand how CNNs work in literature. In [14,15], a multi-layered
Deconvolutional Network is utilized to map the features com-
puted at each layer of the network back to the input pixel
space. These methods allow for scrutinizing the learned filter
weights and gain intuitive insights that validate the learning of
the CNN. The code-base in [16] utilizes these approaches and
implements a hierarchical visualization of CNN features for
a given image that allows to study different neurons and their
dependencies between adjacent layers. The neurons progres-
sively compute complex features from simpler ones at higher
convolutional layers which correspond to abstract interpretable
features regarded as the “parts” of a specific class.
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Fig. 1: (a) Mt trained deep models, (b) Examples of simple
and complex DPEs extracted from the t trained models; for a
complex DPE, the red links show neurons that contribute to
the next layer and crosses show the pruned connections.

In this paper, we propose a novel method of training a
CNN with Deep Part Embeddings (DPEs). DPE refers to a
neuron in higher convolutional layers of a trained CNN along
with its sub-network of filter activations starting from the first
convolutional layer, that is visually interpretable as a part of
the class of interest. For e.g. in Fig. 3(b), we show DPE for part
“wheel” of Car class. Given a new class with limited training
data and we need to train a new model for it, we showcase
different ways of learning interpretable DPEs corresponding
to the new class from CNN network(s) not trained on the new
class. For e.g. in Fig. 3(c), in order to train a new model for
the Bus class with limited samples, we borrow the DPEs that
intuitively constitute a bus such as “wheels”, “windows” etc.
from a CNN network not trained on bus images. We combine
these DPEs in a network and train it using limited bus train-
ing data to effectively learn the class with high accuracy. We
propose two methods of learning - (i) sequential; when DPEs
are sourced from different CNN architectures and (ii) shared;
when DPEs are sourced from same CNN architecture.

We extend this approach to the case where we have a
trained CNN for n classes and we want to learn a new class
with limited training data. We sequentially learn the DPEs for
the new class with CNN and retrain with labeled samples for
the new class and a subset of the data from n classes. The
learnt network is able to achieve high accuracy on new class
without significantly affecting the accuracy of n classes.

In summary, the main contributions of this paper are
1. We propose a novel concept of Deep Part Embeddings.
2. We propose a novel methodology to train a CNN for a new
class using DPEs, that intuitively constitute the class, with
limited training data.
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Fig. 2: Illustration of proposed (a) Sequential Learning, (b) Shared Learning Approach, and (c) Architecture that sequentially
learn existing model architecture with simple and complex DPEs with Reduced FC layers

3. We propose two methods of learning the DPEs in the CNN
architecture when sourced from different CNN architectures
(sequential) and same CNN architecture (shared).
4. We provide a methodology to share filters in case of shared
learning architecture and selectively prune filters based on
their contribution to the DPEs.

2. PROPOSED METHODOLOGY

2.1. Problem Statement

Let M = {M1, .,Mt} be the set of t trained deep models on
different datasets. Let cji represent the jth class for ith deep
model, where i ∈ {1, ., t}. Our goal is to first extract DPEs
from these models and then use the extracted DPEs for training
a new CNN with limited number of training samples. We
present the details of these methods in the following sections.

2.2. Extraction of Deep Part Embeddings

Fig. 1(a) shows the t deep models with different architectures
trained on different classes. For each of these t models, we
identify all the neurons that are interpretable as parts of a
specified class that the model is trained on. This is achieved
by analyzing the hierarchical visualization [16] obtained for
different training images of the specified class. For example in
Fig. 3 (a), “Wheel” part is represented by three neurons (203,
328, 364) at Conv4 layer. We also use this information to find
which of the lower layer neuron(s) contributed in activating the
identified neuron(s). For example, if a part xjk

i of some class cji
(where k is the total number of parts in class cji ) is represented
at “Conv3” of a neuron, we store and use this information to
identify the neuron(s) which activated it at lower layers i.e.,
“Conv2” and “Conv1” using the hierarchical representation
proposed in [16]. For example, in Fig. 3 (b), the DPE for
“Wheel” comprises of three neurons at “Conv4” layer, while
rest of the neurons at layer “Conv3”, “Conv2”, and “Conv1”
contribute for the activation of these three neurons at “Conv4”.
Collectively, these selected neurons along with the underlying
network connections among different layers create the DPE

of the selected part (in this case “Wheel”). This approach of
neuron selection at lower layers relates a feature in layer l to
layer l − 1 using the below weight matrix:

wl−1,r = |bl−1 � ∂f(blr)

∂bl−1
| (1)

where, f : feature map → R, where R be the sum of all
pixels in an image, blr and wl

r are the activations and weight
matrix at layer l for rth feature map. We select those neurons
from l−1 layer whose values are greater than (max(|wl−1|)−
min(|wl−1|))/2. At each layer l we identify the set of neurons
which do not qualify the constraint as hi.

Let us assume that Ai = {a1i , .., a
Ni
i } is the architecture

of model Mi, where ali represents the set of nodes in lth deep
layer and Ni is the total number of layers in Mi. Then, the
kth DPE for architecture Ai for class cji can be represented as
P jk
i = {p(j)(k)(1)i , ...., p

(j)(k)(l)
i ..}, where p

(j)(k)(l)
i = {ali −

h
(j)(k)(l)
i }, and h

(j)(k)(l)
i represents the set of neurons at lth

layer for kth part of jth class in ith model that do not con-
tribute to the selected neurons at (l + 1)th layer. Figure 3(a),
shows the visual illustration of some of the neurons selected
for different parts of Car and Train Class. Figure 3(b) shows
the final extracted neurons from each layer, which represents
the DPE for the part “Wheel”. When we have all the selected
neurons at layer l contributing to the selected neurons at layer
(l+1), we refer to it as simple part embedding (see Fig. 1(b)(i)).

However, there can be another case in which complex part
embedding is possible. In this case, neurons at p(j)(k)(l−1)

may not be contributing to all the neurons at p(j)(k)(l) (see Fig.
1(b)(ii)). This can occur due to the pruning constraint applied
for neuron connections at each layer. Thus, some neurons at
layer (l−1) would only contribute to certain neurons at layer l.
In such a case, we break the connections between those nodes
while creating a part embedding (see Fig. 1(b)(ii)).

2.3. Sequential Deep Architecture Learning (SeqDPE)

SeqDPE helps to learn the DPEs which are coming from differ-
ent models. For eg, for the case of two models (Mu and Mv):
(a) Mu model contains cju (say “Car”) as one of the training
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Fig. 3: (a) Representative Neurons of parts for Car and Train Class in Alexnet; (b) DPE for part “Wheel”, (c) Parts representation
for new class “Bus” to be learned with “Train” and “Car” parts.

Table 1: Comparison of class-wise accuracy (%) for learning a
new class with different approaches

Billiards Hammock Horse Ladder MotorBikes T-shirt Airplanes Face-Easy Bus (new Class)
ETE_8CM 62 45.75 49.36 30 97.29 72.83 100 100 -

ETE-25 43.33 12.5 42.10 43.33 96.24 62.5 85.71 96.29 28.53
ETE-50 42.13 18.5 44.10 41.33 97.14 66.25 85.71 96.29 30.53

ETE-150 43.33 17.5 49.10 44.16 96.24 67.81 85.71 96.29 34.53
ETE-200 41.23 41.75 54.89 41.22 96.24 62.5 92.71 100 57
ETE-250 44.27 43.75 57.89 48.33 96.24 65.5 95.71 100 65

FT-25 60 37.5 31.57 26.6 92.59 70.83 95.23 96.29 55.7
Ours (CFC)-25 60.02 43.2 47.24 30 97 70 100 97 74.2
Ours (RFC)-25 61 44.75 48.24 36 97.29 71.24 100 100 77.6

class; (b) Mv model contains cj
′

v (say “Train”) as one of the
training class. For learning a new model Mt+1 for class c (say
“Bus”), we need DPEs of cju and cj

′

v , as shown in Fig. 2(a).
In SeqDPE we add: (a) first level fully connected (FC) layer

- FC layer for each DPE, and (b) second level fully connected
layer - FC layer which combine the first level FCs to learn
the semantic arrangement of different parts to represent a new
class. We illustrate this in Fig. 2(a). The second level FC layer
is finally connected to the Soft Max loss layer.

2.4. Shared Deep Architecture Learning (ShaDPE)

For the DPEs extracted from same model architecture, we
propose the method of “Shared Learning”. Given a model
(My) that has cjy (say “Car”) as one of the training class and
cky (say “Train”) as another training class. For learning a new
model Mt+1 for class c (say “Bus”), we utilize the DPEs of cjy
and cky , as shown in Fig. 2(b).

In ShaDPE we have two scenarios, (a) all DPEs end at
the same layer (say Conv3), (b) DPEs end in different layers
(say first DPE ends at Conv3, and second at ConvK as shown
in Fig. 2(b)). For scenario (a), we first combine the neurons
at each layer while pruning the extra connection between the
edges. For scenario (b), we identify the DPE with the least
penetration in the network (smallest number of layers) at layer
l. We combine the neurons that are common till layer (l − 1)
using the above approach. For e.g. in Fig. 2(b), DPE-1 ends
on Conv3 layer, and DPE-2 ends on ConvK layer. Thus, we
combine the models till Conv2 layer. From Conv3 layer, we
divide the architecture into two parts, (a) one which ends on
Conv3 (of smaller network) to Conv3_1 and other to Conv3_2
(of bigger model). Conv3_1 is termed as a branch ending for
DPE-1. Further, Conv3_2 connects to rest of the layers till
ConvK as shown in Fig. 2(b). We use the same process for
the remaining DPEs. Finally, we connect the network output
of each branch to a second level FC layer. Here, we add an

FC layer on top of Conv3_1, and ConvK, which helps to learn
semantic relations between the parts captured at Conv3_1 and
ConvK. We do not need a first level FC layer in this case, as
these DPE’s are part of the same models.

2.5. Modifying N Class Model to N+1 Class Model

We combine the above two proposed architectures to train an
existing model to learn a new class through its DPEs. Given
a trained model Mi, we want to add new class c whose DPEs
extracted from other models are P js

i , where s ∈ {1, .., z}, z is
the total number of DPEs identified for the class c, the DPEs
which come from same architecture are combined using the
ShaDPE, and the DPEs which come from different architec-
tures are combined using the SeqDPE as discussed in Sections.
2.3 and 2.4. Overall, the layers of model Mi are combined to
the DPEs in a sequential way (See Fig. 2(c)).

To combine the network architectures from the original
model and the DPEs, we propose the following two methods-
(a) Reduced FC (R-FC) and (b) Complete FC (C-FC) Layers.
For R-FC layers, we do not add first level FC layer with Mi,
as this is an already fully trained model. We add first level FC
layers to each of the DPE architectures. The last layer of the
original model, and newly added first level FC layers of DPEs
are finally connected to second level FC layer (FC_Final as
shown in Fig. 2(c)). For C-FC Layers we add a single FC layer
with the model Mi with that of the DPEs. Finally, all the single
level FC layers are connected to a second level FC layer.

2.6. Part Neuron(s) Identification for DPE Creation

We identify the part neurons by visually glancing the filters
of different layers. For example in Fig. 3 (a), “Wheel” part is
represented by three neurons (203, 328, 364) at Conv4 layer,
similarly “Headlight” part is represented by neuron 340 at
Conv3 layer. In future, our aim to automatically extract DPEs
utilizing techniques like DPM [17], Latent SVM [18].

3. RESULTS AND EVALUATION

3.1. Dataset Details

Bus Dataset: We gathered a total of 1500 Bus Class samples
(positive class) and randomly sampled 2000 images that did
not contain a bus (negative class) from ImageNet [19], Pascal
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Fig. 4: Plot of test accuracy against the training iterations for varying samples per class on (i) Bus Class Dataset, and (ii)
Combined dataset (Caltech-8 + Bus Class)

VOC 2007 [20] and Caltech-256 [21] datasets.
Caltech-8 Dataset: We selected those classes from Caltech-
256 dataset [21] where total number of samples for a class
was greater than 250 (Billiards, Hammock, Horse, Ladder,
Motorbikes, T-Shirt, Airplanes and Face-Easy). Data for these
8 classes constitute the Caltech-8 dataset.

3.2. Baselines

Fine Tuning (FT) Approach: Due to small dataset size, we
freeze the first few layers (copied from pre-trained base deep
model) and perform training only on the additional new layers.
End-to-End (ETE) Training: A new model is trained from
scratch by randomly initializing network weights and requires
significant training data to accurately learn network weights.

3.3. Experimental Settings

We evaluate our framework for two tasks (i) Learning Bus
Class with SeqDPE and ShaDPE, (ii) Modifying existing deep
model to learn Bus Class. Using the concepts discussed in
Sec. 2.2, we find the representative neurons of similar looking
parts from “Car” and “Train” class (see Fig. 3(a)) and extract
corresponding 5 DPEs (see Fig. 3(b)). Finally, we learn these
5 DPEs using proposed SeqDPE and ShaDPE approaches. For
Testing of Bus dataset, we used 500 samples from bus class,
and 500 samples from negative class. For the task of learning
a new class for an existing model, we report the performance
on 700 test samples for the 9 classes (Caltech-8 + Bus).

3.4. Discussion

We showcase the effectiveness of proposed ShaDPE and Se-
qDPE on Bus Class dataset. Fig. 4 shows the plot of test
accuracy against the training iteration for different methods
and varying amounts of training data samples per class (25,
200, 400, 1000). As seen in Fig. 4 (ii), proposed ShaDPE is
performing consistently better than SeqDPE and significantly
better than the baseline even for few samples per class (Fig.
4(a-d)) due to fewer parameters that need to be learned and is

able to achieve a reasonably high performance even with as
few as 25 samples per class.

For the task of adding a new class to an existing trained
deep learning model, we sequentially combine ShaDPE for the
Bus class with existing trained model on the Caltech-8 dataset
and train the complete network with the data for 9 classes
(Caltech-8 + Bus Class) with reduced as well as complete FC
approach. Fig. 4 (i) shows the comparison of the two networks,
with FT and ETE training baselines on 9 classes.

From Fig. 4, we observe that proposed approaches perform
higher than both baselines even with few training samples
per class (25, 50) Overall, the reduced FC approach shows
improved performance with fewer training samples per class
and converges with few training iterations. This is because it
only needs to retrain the FC layer for the DPE architecture
since the FC layer of initial Caltech-8 model is already trained
and directly contributes to the softmax output.

Table 1 shows the class-wise performance of the different
network architectures for the 9 classes (Caltech-8 + Bus Class).
We fine-tune the FC layers of the Caltech-8 model with 25
samples per class which forms the final baseline. We observe
that both ShaDPE and SeqDPE do not significantly affect the
performance of the base Caltech-8 model while learning a
new class. Also, the networks are able to achieve a reasonably
high performance on the new Bus class (74-77%) while the
baselines have poor accuracy due to insufficient training data.
From these results, we conclude that it is possible to train a
deep model over a new class with limited samples given the
DPEs for the new class.

4. CONCLUSION

In this paper, we proposed a novel framework for training
CNNs with DPEs. We present different ways of combining
these part embeddings into a network to learn a class with few
training samples. To the best of our knowledge, we present the
first attempt for DPE creation and using at for training a deep
neural network for different classes and show the effectiveness
of our framework against standard baselines.
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