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ABSTRACT

Ambisonics i.e., a full-sphere surround sound, is quintessential with
360◦ visual content to provide a realistic virtual reality (VR) experi-
ence. While 360◦ visual content capture gained a tremendous boost
recently, the estimation of corresponding spatial sound is still chal-
lenging due to the required sound-field microphones or information
about the sound-source locations. In this paper, we introduce a novel
problem of generating Ambisonics in 360◦ videos using the audio-
visual cue. With this aim, firstly, a novel 360◦ audio-visual video
dataset of 265 videos is introduced with annotated sound-source lo-
cations. Secondly, a pipeline is designed for an automatic Ambisonic
estimation problem. Benefiting from the deep learning based audio-
visual feature-embedding and prediction modules, our pipeline esti-
mates the 3D sound-source locations and further use such locations
to encode to the B-format. To benchmark our dataset and pipeline,
we additionally propose evaluation criteria to investigate the per-
formance using different 360◦ input representations. Our results
demonstrate the efficacy of the proposed pipeline and open up a new
area of research in 360◦ audio-visual analysis for future investiga-
tions.

Index Terms— Virtual Reality, 360◦ video, Spatial sound, Am-
bisonics, Multi-model, Deep learning.

1. INTRODUCTION

Recent advancements in virtual reality (VR) technologies have
paved the way of capturing and sharing omnidirectional videos (ODVs)
over social media. ODV, also known as 360◦ video, provides the
visual representation of the 360◦ surrounding of the captured scene.
This emerging representation can be navigated with three degrees
of freedom by rotating and changing the viewing direction of VR
devices (e.g., tablet, laptop, head-mounted display). Users can
nowadays, easily capture the 360◦ content with the help of afford-
able 360◦ cameras available in the market (e.g., Ricoh Theta [1] and
Samsung Gear 360 [2]) and share their ODVs over social networks
to engage viewers deeply.

Essentially, creating realistic VR experiences requires the ODVs
to be captured with their spatial audios. The spatial aspect of sound
plays a significant role in informing the viewers about the location of
objects in the 360◦ environment, providing an immersive multime-
dia experience. In practice, however, existing affordable 360◦ cam-
eras can capture the visual scene either with mono or stereo audio
signals. As a consequence, such audio-visual content is incapable of
creating a magical sense of “being there” in the VR environment.

Recent user studies have amplified the need for spatial audio to
achieve presence in VR films [3–5]. A spatial audio signal (also re-
ferred to as 3D audio or 360 audio) is considered as a powerful way
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of directing viewers’ attention [6, 7], however, requiring expensive
sound-field microphones, professional sound recording and produc-
tion tools [8, 9].

The lack of spatial audio captured by affordable 360◦ cameras
poses an interesting alternative audio-visual research topic in multi-
media signal processing community – given ODV with a mono/stereo
audio signal, can we create the spatial audio to be used for VR video
applications?.

In this work, we introduce a novel problem of generating Am-
bisonics from the mono/stereo audio signal based on the audio-visual
cue. Ambisonics is an effective way of representing the spatial audio
and providing 3D sound for VR applications [10]. The Ambisonic
technology is based on the spherical harmonic decomposition of
the sound field and can encode the wave equation in the spherical
coordinate system (r, Φ, θ). In this context, r is the distance to
the source point from the center of coordinates, Φ ∈ (−π, π] and
θ ∈ [−π/2, π/2]. This direction of the sound can be encoded into
four different channels (W , X , Y , Z) of the B-format [11], which
is the basis for the first order Ambisonics. Hence, the location of
a sound source on the sphere is required to be known to generate
Ambisonics.

To tackle this problem, in this paper, we establish a well-
annotated dataset and design a 4-stage pipeline to estimate the
locations of sound sources. The dataset contains 265 ODVs with
different audio-visual scenarios, such as round-table discussions,
presentations, meetings, documentaries. In addition, we design a
4-stage pipeline to estimate the locations of sound sources on the
sphere to generate the Ambisonics, where the 4-stages are namely,
representation, feature embedding, prediction, and encoding. Our
proposed pipeline adopts the deep learning based audio-visual fea-
ture embeddings and prediction techniques to facilitate the 3D
localization of sound source using different ODV input represen-
tations. Also, we benchmark our dataset by proposing evaluation
criteria to investigate the performance of our pipeline.

In a nutshell, the main contributions of this paper are threefold.
First, we address the problem of automatic spatial audio estimation
based on audio-visual cue as a first work. Second, we establish the
first 360◦ Audio-Visual Dataset (360AVD) which contains 265 video
clips with a well-annotated ground-truth providing the sound direc-
tion and location. Third, we propose evaluation criteria and perform
preliminary quantitative and qualitative analysis using two widely
used ODV projection techniques and state-of-the-art feature embed-
ding and prediction algorithms to estimate the location of the sound
source. We expect that releasing this dataset and addressing this
novel research question will foster further research in multimedia
signal processing area.

The rest of this paper is organized as follows. Section 2 presents
the related work on audio-visual machine learning and generating
spatial audio. The proposed audio-visual dataset and the proposed
pipeline are described in Section 3 and 4. Section 5 presents the
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Fig. 1: Generation of a full-sphere surround sound environment in ODVs using audio-visual embeddings. The four modules of the pipeline
are (I) Representation, (II) Feature embedding, (III) Prediction and (IV) Ambisonics encoding.

experiments with the used metrics. Our conclusions are drawn in
Section 6.

2. RELATED WORK

Recent works showed that the location of a sound source could be
estimated based on audio-visual signals. For instance, Owens et
al. [12] modeled the visual and auditory signals and predicted the
sound source pixel location on a given traditional 2D video. Simi-
larly, Tian et al. [13] proposed audio-guided visual attention mecha-
nism to explore audio-visual correlation with a target to predict event
localization in traditional 2D videos. Also, Ephrat et al. [14] pre-
sented a deep network-based model that incorporate audio-visual cue
to extract each speaker sound from a mixture of sounds. Audio-
visual salient event detection was studied in [15] based on visual,
audio and text modalities. The work showed that the performance
of visual saliency estimation could be improved by incorporating
audio and text. Coleman et al. [16] showed that an object-based au-
dio capturing could achieve a convincing 3D audio experience over
headphones. Furthermore, in [17], source separation system was
presented for high order Ambisonics recording. A multi-channel
spatial filter was derived based on the long short-term memory re-
current neural network with an assumption of known the directions
of arrival of the directional sound sources.

However, to the best of our knowledge, no research on Am-
bisonics generation based on the audio-visual cue of ODV content
currently exists.

3. DATASET

Dataset is fundamental in predicting the sound location on ODV.
However, to the best of our knowledge, there is no publicly avail-
able dataset suitable for our objective. To this end, we present the
first 360AVD which contains 265 video clips with a well-annotated
ground-truth providing the sound direction and location. The dataset
has been prepared using publicly available YouTube 360◦ unlabeled
videos. Each clip in the dataset is of 10 seconds where all the au-
dio sources are manually annotated per second. To annotate the au-
dio source locations, we used Microsoft’s visual object tagging tool1

which supports labeling of multiple pixel locations for each second
of a given video content. The dataset contains a different range of
categories: presentation, documentary, debates and casual discus-
sions. Sample scenes from the proposed dataset are presented in

1Visual Object Tagging Tool: An electron app for building end to end
Object Detection Models from Images and Videos: https://github.
com/Microsoft/VoTT

Figure 2. Our proposed dataset with our source codes are available
at https://github.com/V-Sense/360AudioVisual.
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Fig. 2: Sample scenes from the proposed 360AVD.

4. PROPOSED SYSTEM

Figure 1 illustrates the proposed pipeline for the generation of a full-
sphere surround sound environment in ODV. The proposed system
consists of four main modules, namely (I) input representations, (II)
feature embedding, (III) prediction models, and (IV) Ambisonics en-
coding. At the first module, our aim is to investigate the impact of
different sphere-to-planar projections for ODV. At the second mod-
ule, we jointly estimate features for audio and video signals. Then,
the combined information from the video and audio signals is fed
into the prediction module to predict the 3D sound source location
of a given ODV. Finally, we generate first-order Ambisonics by in-
cluding the direction of the sound and encoding the estimated multi-
channel audio based on the B-format.

We detail each module of the pipeline in the following sub-
sections.
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4.1. Input Representations

Equirectangular Projection360 Video Cubemap Projection

Fig. 3: Visual representation of equirectangular and cubemap pro-
jections for the captured 360◦ video.

We investigate the performance of two widely used ODV rep-
resentations, equirectangular and cubemap (or cubical), as shown
in Figure 3. The first, an equirectangular projection, is the most
straightforward format that represents a spherical object on a 2D
planar surface. The second, a cubic projection, is a collection of
six cube faces which are utilized to fill the whole sphere around the
viewer. The first projection, however, contains less geometrical dis-
tortions than the second one.

4.2. Feature Embedding

Combining visual [18] and audio embedding using deep learning
techniques have been recently studied in the literature [12, 13] for
several end-to-end application-based scenarios such as source sepa-
ration, action recognition, and audio-visual alignment. Most of the
works are designed for traditional 2D video with a mono/stereo au-
dio signal. However, such models combining the visual and sound
information have not been studied for 360◦ video content.

Motivated from [12, 13], we formulate the feature embedding
and prediction modules of the proposed Ambisonics generation
pipeline. For the feature embedding module, we firstly employ the
pre-trained VGG-19 [19] network to compute the visual features
using the selected 360◦ visual representation i.e., equirectangular or
cubical projections. For each second, similar to [13], we compute
the feature maps from 15 frames and average them to obtain one
feature map, v, of the dimension of 7× 7× 512. For each second of
audio signal, we simultaneously extract the 128 dimensional audio
representation, a, using a pre-trained VGG-like network [20]. Then,
we finally feed the extracted feature embedding to the following
prediction module to obtain the sound source probability maps, as
shown in Figure 1.

4.3. Prediction Module

To predict the location of the sound source, we first adopt the sub-
networks of the proposed deep networks, Tian et al. [13] and
Owens et al. [12], originally designed for traditional 2D videos. We
then alter them for our task at hand i.e., to predict the 3D volumetric
maps. Both models are recently published and their models are
publicly available. We used the middle-layers from these pre-trained
models to obtain the sound source location maps. The two predic-
tion modules of our pipeline are named as a self-supervised module
(SsM) and attention module (Att).

SsM module: It is an adaptation of the fusion sub-network pro-
posed in [12] with three convolutional layers. To predict the sound
localization map SSsM

p , we concatenate the feature embedding and
feed it to the convolutional layers, and finally apply the spherical
mapping function f over the probability estimation map given as:

SSsM
p = f(σ(LT convl)), (1)

where σ is the sigmoid function, L is the affine layer, convl is the
last convolutional layer and function f maps (x, y) → (θ, φ) coor-
dinates.

Att module: It is inspired from attention mechanism detailed
in [13], adaptively learns to locate the visible regions in each second
of the video from where the sound originates. To predict 3D sound
for each second, localization maps SAtt

p is mathematically defined
as:

SAtt
p = f(softmax(ω · ρ(lv) + la)), (2)

where the ρr is a hyperbolic tangent function, ω is a weighting pa-
rameter and la and lv are the audio-visual transformation layers.
Altogether, the attention weight vector computed using the multi-
layer perception (MLP) like formulation as detailed in [13], is finally
transformed by applying function f .

4.4. Ambisonics Encoding

After the sound localization maps S is estimated, we encode local-
ized sound sources to the B-format. For this, the location of the i-th
sound source is first estimated as follows:

Φ̃i, θ̃i = C (3)

where C is the set of a sound source location based on 3D coordi-
nates, {C}Ni=1, N is the number of sound sources, Φ̃i and θ̃i are the
predicted spherical locations of the i-th sound source. The center
of sound source Ci is the mean location of distribution of 3D point
in the i-th sound source probability volumes S. The spherical vol-
umes S are obtained by an absolute threshold, i.e., for all coordinates
where S(x, y, z) ≤ ε, values are equated to 0. Hence, we encode
the B-format as follows:

W (t) =

N∑
i

si(t)/
√

2,

X(t) =

N∑
i

si(t)cosΦ̃icosθ̃i,

Y (t) =
N∑
i

si(t)sinΦ̃icosθ̃i,

Z(t) =

N∑
i

si(t)sinθ̃i,

(4)

where si(t) is the i-th sound signal of a given ODV, and the set of
four audio channels (W,X, Y, Z) form the estimated Ambisonics.
The non-directional sound pressure level is represented as W , and
three other channels, (X,Y, Z), are described as the position of the
sound: front-to-back (X), side-to-side (Y ), and up-to-down (Z).

5. EXPERIMENTS

This section describes the proposed metrics and preliminary results
obtained from our proposed pipeline for Ambisonics generation.

5.1. Metrics

To evaluate the performance of the predicted sound source location
quantitatively, we introduce two metrics, namely, 360 Sound Source
Distance (360-SSD) and 360 overlap error (360-OvErr).
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Models 360-SSD 360-OvErr
ε=0.6 0.5 0.4 0.6 0.5 0.4

SsM-Cubical 0.71 ± 0.04 0.72 ± 0.08 0.74 ± 0.06 0.71 ± 0.06 0.77 ± 0.05 0.82 ± 0.04
SsM-EquiR 0.75 ± 0.06 0.77 ± 0.09 0.79 ± 0.07 0.78 ± 0.07 0.84 ± 0.06 0.88 ± 0.08
Att-Cubical 0.72 ± 0.05 0.73 ± 0.05 0.74 ± 0.04 0.72 ± 0.05 0.74 ± 0.08 0.78 ± 0.08
Att-EquiR 0.76 ± 0.04 0.77 ± 0.08 0.78 ± 0.06 0.84 ± 0.06 0.85 ± 0.06 0.86 ± 0.06

Table 1: Quantitative Results on 360AVD Dataset. The scores are averaged on 265 ODVs for all models.

360-SSD: It estimates the Euclidean distance between the cen-
tre of the predicted i-th sound source, Cp

i (x, y, z), and the centre of
ground truth i-th sound source, Cg

i (x, y, z), in the Cartesian coor-
dinate system i.e., ||Cg

i − C
p
i ||. The center of sound source Ci is

defined in Section 4.3. For 360-SSD, all distances are normalized
and the probability spheres have radius 0.5.

360-OvErr: This metric is based on the ratio of an intersection
of the predicted and ground truth probability volumes to the union
and, mathematically given as 1− Sp∩Sg

Sg∪Sp
, where Sp is the predicted

probability volumes and Sg belongs to the ground truth. This mea-
sure can be seen as a 3D variant of single object localization error
proposed in [21].

5.2. Implementation

Feature embedding and prediction. We base on the VGG-19 [19]
and VGG-like [20] network for feature embedding module and com-
puting audio and visual features are trained on Imagnet [19] and Au-
dioset [22] dataset. For our SsM module, we adopt the convolutional
layers from [12] which are trained large scale dataset of 750,000
videos. Similarly, we adopt the transformation layers la and lv in
Eq. 2 from the model proposed in [13] trained on a large-scale AVE
dataset. The followed training paradigm is similar to [12, 13].
Ambisonic encoding. To encode Ambisonics, we used the Face-
book 360 encoder tool from the Facebook Spatial Workstation [23].
Each predicted location for each sound was added to the location
channels of B-format. Afterward, the MP4Box [24] was used to
wrap the ODV and multi-channel audio together within an MP4
header file.

5.3. Results

In this section, we carried out the performance evaluation study of
the proposed Ambisonics generation pipeline using both well-known
representations and state-of-the-art prediction models over the pro-
posed 360AVD dataset.

We first evaluated the performance of the predicted probability
volumes, quantitatively, by using the proposed metrics: 360-SSD
and 360-OvErr. For both metrics, less score stands for better perfor-
mance. In Table 1, we present the results averaged over 265 ODVs
with cubical and equirectangular formats and different settings of ε.
Using both the metrics, we observe that SsM model-based prediction
module with cubical ODV input representation performs the best in
terms of localizing the exact sound source 3D location as well as the
region. Att model-based prediction module competes closely with
the former for localizing the 3D sound source.

For both models, we observe that cubical ODV representation
provides better localization than the equirectangular format. This
partly accounts to less distortions present in the cubical format,
which in turn is favorable for distinctive feature embedding and
prediction. On the other hand, the overall higher 360-OvErr with
equirectangular format demonstrate the influence of the distortions
where it leads to larger detected regions. This can be additionally
seen in Fig. 4 where the qualitative performance of both models are

illustrated with cubical and equirectangular representation. Addi-
tional results, e.g., ODV with generated Ambisonics, are available
on our Github page.

(a) Original EquiR (b) SsM-EquiR (c) Att-EquiR

(d) Original-Cubical (e) SsM-Cubical (f) Att-Cubical

Fig. 4: Qualitative Results: Row I shows the original 360◦ video
frame with (a) overlay-ed ground truth, predicted results from (b)
SsM and (c) Att modules in equirectangular representation. Row II
shows the same frame with (d) overlay-ed ground truth, predicted
results from (e) SsM and (f) Att modules in cubical representation.

6. CONCLUSION

This paper introduces a novel research problem of automatic Am-
bisonics generation from the mono/stereo audio signal based on
audio-visual cue. For this aim, we propose a pipeline to predict
the sound source location in a 3D space and time. The proposed
pipeline contains four stages, representation, feature embedding,
prediction, and Ambisonics encoding. To investigate the perfor-
mance of each module, we introduce the first audio-visual dataset of
265 omnidirectional videos consisting of various single to multiple
speech scenarios and evaluation metrics. Our initial analysis shows
that the cubical representation of omnidirectional video with the
self-supervised deep learning prediction algorithm performs better
performance. All obtained results suggest that the problem of ac-
curate sound source location estimation using audio-visual cue for
Ambisonics remains open with a quite large room of improvement.
The future work will consider developing optimal modules for our
end-to-end pipeline for Ambisonics generations.
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