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ABSTRACT

Image registration methods based on Thirion’s demons
method update displacement field by the image gradient
obtained by integer order derivate. However, the fractional
order derivate is superior to integral order derivate for com-
puting image gradient under weak texture or smooth regions.
To obtain high accurate image registration, we propose a new
fractional order derivate based Log-Demons with driving
force. We design a new fractional order derivate convolu-
tion mask based on Grünwald-Letnikov (GL) definition to
get accurate image gradient. Then, we integrate fractional
order derivate into Log-Demons with driving force. The ex-
periments on synthetic and MRI brain images validate that
the use of fractional order derivate to compute gradient not
only improves the registration accuracy but also speeds up
the registration process.

Index Terms— Image registration, image gradient, frac-
tional order derivate, convolution mask

1. INTRODUCTION

Nonrigid image registration is one of fundamental fields in
computer vision, especially for medical image processing.
Owning to the pioneering research of Thirion’s basic demons
algorithm [1], which introduced diffusing model into image
registration, abundant relevant work is devoted to improving
the performance of demons algorithm over the past decades
[2],[3],[4]. But these improved methods have a limitation
that they do not maintain the invertibility of the displace-
ment fields. Log-Demons was proposed by Vercauteren et
al. [5],[6],[7] to produce diffeomorphic transformation in Lie
Group. Based on Log-Demons, Lorenzi et al. [8] proposed a
robust registration method named LCC-Demons which used
local correlation coefficient as similarity metric. The ap-
proaches under Log-Demons employed graph spectrum [9]
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and Spectral Graph Wavelets [10] to cast registration into a
feature matching problem and they obtained an improvement
in registration accuracy.

However, for these variants of demons algorithm, the
force to update the displacement field is typically provided by
image gradient and it will be prone to local minima when im-
age gradient is null in textureless areas [9]. The conventional
way of calculating the gradient is to use integer order derivate,
and thus the gradient magnitude in weak texture is approxi-
mately zero. Fortunately, it is reported in [11] that fractional
order derivate can enhance image gradient in smooth area,
which is often used in texture enhancement [12]. After that,
Zhang et .al [13] integrated fractional order derivate into vari-
ational model to produce accurate and smooth deformation
fields. Melbourne et al. [14] implemented registration by
fractional gradient images instead of intensity images and the
result shows better recovery.

In this paper, we propose a novel fractional order derivate
based Log-Demons with driving force for high accurate im-
age registration. We construct fractional order derivate convo-
lution masks to convolve with image to obtain image gradient
and then embed it into Log-Demons with driving force [15].
This can enhance gradient magnitude in smooth or weak tex-
ture regions, thus the updated displacement fields are more
accurate. We evaluate our proposed method on synthetic and
MRI brain images and the experimental results validate that
our method is effective.

2. METHOD

Log-Demons with driving force is proposed by Zhang et .al
[15], which can obtain a good result for the large deformation
image registration. We call it DLog-Demons here. To further
obtain high accuracy of DLog-Demons, we propose a novel
fractional order derivate based DLog-Demons.

2.1. Fractional order Derivate based DLog-Demons

Given a fixed image F and a moving imageM , the goal of im-
age registration is to seek a displacement field s(.) : p→ s(p)
for each pixel p that makes F (p) and M(s(p)) are similar.
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The main point of DLog-Demons is the use of driving force.
The driving force uc is defined by the correspondent bound-
ary points between fixed and moving images. Then uc is in-
tegrated into Log-Demons [7] by exponential map exp(·), the
energy function of DLog-Demons is as followed:

E(u) =
1

λ2i
Sim(F,M ◦ s ◦ exp(u) ◦ exp( 1

λ2k
uc))

+
1

λ2x
dist(s, s ◦ exp(u) ◦ exp( 1

λ2k
uc)) +

1

λ2T
Reg(s) (1)

where λi, λx and λT are the noise on image intensity, a spatial
uncertain on the correspondences and the amount of regular-
ization, respectively. λk controls the amount of driving force.
The formula of the updated displacement field u at each pixel
p can be obtained by optimizing Eq.1 with the first order poly-
nomial approximation [15]:

u(p) = −F (p)−M ◦ s(p)
||Jp||2 +

λ2
i (p)

λ2
x

JTp −
1

λ2k
uc(p) (2)

Different experssion of Jp in Eq.2 can be explained by adopt-
ing different optimization strategies [7]. Based on the Gauss-
Newton scheme, Jp = −∇p(M ◦ s).

In general, conventional integral order derivate is hard
to capture the gradient in smooth regions where gray scale
changes gently, however, fractional order derivate is sentive
to weak texture regions. This allows us to propose fractional
order derivate mask H to convolve with image to get gradi-
ent, namely Jp =H ∗ (M ◦s)p. Thus, the update rule of the
proposed method is:

u(p)=−
(F (p)−M ◦s(p))(H∗(M ◦ s)Tp )

||H∗(M ◦s)p||2+
λ2
i (p)

λ2
x

− 1

λ2k
uc(p) (3)

Eq.3 is our proposed rule to update displacement field. Due
to fractional order derivate embedded, image gradient in weak
texture or smooth regions can be enhanced. Thus, high accu-
rate updated displacement field can be obtained. We call our
method FDLog-Demons. We will present how to construct
the fractional order derivate maskH in the following sections.

2.2. Fractional Order Derivative

The fractional order derivate has a long history and three
classical fractional order derivates have been widely applied
in image processing, namely Grünwald-Letnikov (GL), Rie-
mann–Liouville (RL) and Caputo [16]. The GL definition
derives from the preceding of integer order derivate and is
the limit of the weighted sum, thus it has an advantage in
numerical calculation. Given a one dimension signal f(x) in
domain [a, x], a < x, a ∈ R, x ∈ R, h is the step size and
α ∈ R denotes an arbitrary fractional order, the GL derivative
is defined by:

GLDα
[a,x]f(x)= lim

h→0
h−α

n=[ x−a
h ]∑

k=0

(−1)kCkαf(x−kh) (4)

where Ckα is the binomial coefficient. In 1D computational
domain, we can divide the domain [a, x] by the interval h = 1,
then a discrete formulation of f(x) can be obtained:

dαf(x)

dxα
≈f(x)−αf(x−1)+α2−α

2
f(x−2)

+
−α3+3α2−2α

6
f(x−3)+ · · ·

+
−α(−α+1) · · · (−α+n−1)

n!
f(x−n)

(5)

2.3. Construction of Fractional Order Derivate Mask

Images are usually treated as 2D computational domains, thus
we need to transform Eq.5 to 2D fractional order derivative.
For an arbitrary pixel f(x, y) in an image, the fractional order
derivative of negative x direction under GL definition is given
as:

∂αf(x, y)

∂xα−
≈f(x, y)−αf(x−1, y)+α2−α

2
f(x−2, y)

+
−α3+3α2−2α

6
f(x−3, y)+· · ·

+
−α(−α+1) · · · (−α+n−1)

n!
f(x−n, y)

(6)

The fractional order derivative of negative y direction is sim-
ilar to that of negative x-direction.

According to the research of Pu et al. [17], the preserva-
tion magnitude of image gradient in weak texture and smooth
regions by fractional order derivate is superior to that by inte-
ger order derivate. From our point of view, the first two items
in Eq.6 have the similar effect as the integer order derivate
with respect to gradient since the structure of them are sim-
ilar to integer order derivate. The difference between frac-
tional order derivate and integer order derivate is that there
are high order expansion items in the former. The high order
expansion items are more sensitive to slight change of gray
scale in smooth and textureless regions. Hence, these high
order expansion items can enhance image gradient in texture-
less and smooth regions to some extend and we can select
them to compute image gradient. For numerical completion,
we perform spatial convolution with the image. Fig.1 shows
our constructed convolution masks Hx and Hy on x and y di-
rection, respectively. Balancing robustness with the computa-
tional complexity, we set our fractional order derivate masks
on x and y direction to a fixed size 5 × 5. We choose the
coefficients of the third and fourth items in Eq.6 as mask co-
efficients. Then we employ the constructed masks to convolve
with the image. The convolution result is regarded as image
gradient and it can distinguish textureless and smooth regions
from image. Similar to Sobel operator [18], we use the weight
4 to highlight the role of the pixel at the center of the mask.
Then as is shown in Eq.3, we obtain the update rule of our
proposed method.
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(a) x direction mask, Hx
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(b) y direction mask, Hy

Fig. 1. Our proposed fractional order derivate mask H on x
and y direction, respectively. ψ1 = −α3+3α2− 2α, ψ2 =
α2−α.
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Fig. 2. The performance of FDLog-Demons under different
fractional order α on synthetic images.

3. EXPERIMENTS

We evaluate the performance of our approach on synthetic
images and MRI brain images and compare our method with
original Log-Demons [7] and DLog-Demons [15]. For em-
pirical parameter settings, we use the same parameters for the
compared methods {λi, λx} = {1, 2}. The number of itera-
tions is set to 100. We utilize the Mean Square Error (MSE)
and the Relative Sum of Squared Difference (Rel.SSD) [19]
to measure registration quality.

3.1. Experiments on Synthetic Images

To show the effectiveness of our proposed method, we firstly
select synthetic images from [15] to test. The first and second
columns in Fig.3 show some synthetic images and the cor-
responding moving images are obtained by randomly large
non-rigid deformations, respectively.

3.1.1. Analysis on Fractional Order α

From Eq.3 and Fig.1, we can see that the performance of the
proposed FDLog-Demons depends on the value of α. Some
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Fig. 3. Example of registration results on synthetic images.
(a)(b) are fixed and moving images. (c) is the fusion fixed
and moving images. The area of green and purple stands for
initial difference. (d)(e)(f) are the Rel.SSD and the difference
of fixed image with results aligned by Log-Demons, DLog-
Demons and our proposed FDLog-Demons, respectively.

synthetic images [15] are used to detect the optimal α. Fig.2
studies the performance of FDLog-Demons under different
fractional order α. From the experiments, we find that the re-
sults are better when α > 1. For different images, we can see
that the MSE first drops and then raises up with the increase
of α. Fig.2 shows that the best fractional order α is about 1.4.
Thus, we set α to 1.4 in the following experiments.

3.1.2. Results on Synthetic Images

To validate the performance of our method, we compare it
with Log-Demons [7] and DLog-Demons [15] and the reg-
istration results are shown in Fig.3. We can see that large
deformations exist in all images from Fig.3(c). For Lena, the
results of Log-Demons and DLog-Demons have large differ-
ence in hair region. In contrast, our method registers Lena’s
hair successfully. Although gray scale changes slightly in hair
region, the gradient in this region computed by our method
is more accurate because fractional order derivate is easy to
capture the change of gray value. The same result is shown
in the upper right corner of the box in shoe. For heart and
hand, our proposed method has less difference in the edge of
heart and finger. For marble, it is difficult to see obvious dif-
ference from vision, but the MSE of our method is reduced
by 25.38% and 38.3% compared with the other two meth-
ods. For tennis, it is difficult to align the twisted line in the
bottom right corner. Log-Demons fails to align and DLog-
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Fig. 4. Comparison of three methods by MSE curves of syn-
thetic images.

Demons has a slight improvement than Log-Demons, while
our method aligns the twisted line well. The results of ex-
periment on synthetic images show our method can obtain
excellent performance.

Fig.4 shows the MSE curves of synthetic images. For
the above six synthetic experiments, the MSE curves of our
method drop more rapidly than Log-Demons and DLog-
Demosn, especially at the beginning of registration process.
It shows fractional order derivate can accelerate the registra-
tion process which means the registration process is easier
to converge. In other words, our method can obtain high
registration accuracy within fewer iterations. The results
demonstrate the effectiveness of fractional order derivate
embedded in DLog-Demons.

3.2. Experiments on MRI Brain Images

Demons based image registration methods are mainly applied
in medical image processing. We randomly select 45 pairs of
T1 images from BrainWeb [20] as fixed and moving images,
respectively. Non-brain tissues are preprocessed by the brain
extraction tool (BET) [21]. Similar to the experiments in [22],
we deform the original moving images by 25, 50 and 75 pixels
to generate largely deformable images, respectively. Thus,
we complete four groups of experiments to test our proposed

Fixed 

Log-Demons Original Moving 

Difference 

DLog-Demons FDLog-Demons 

Fig. 5. A comparison of three methods on T1 brain images
from BrainWeb [20].

Table 1. Comparison of registration results on MRI brain
images.

Group / pixel
deformed

Average MSE / Rel.SSD
Log-Demons DLog-Demons FDLog-Demons

1 / 0 pixel 567.53 / 0.1999 566.14 / 0.1992 559.58 / 0.1969
2 / 25 pixels 578.64 / 0.2049 577.87 / 0.2047 569.35 / 0.2018
3 / 50 pixels 626.35 / 0.2107 626.12 / 0.2105 615.54 / 0.2071
4 / 75 pixels 739.36 / 0.2286 728.68 / 0.2253 714.45 / 0.2211

method.
Fig.5 shows an example of T1 brain image registration.

The images in the first column are fixed image (top) and
moving image (below). The images in the rest columns are
the difference and their local enlargement images, which are
obtained by the original difference, difference between the
fixed image and Log-Demons, DLog-Demons and FDLog-
Demons, respectively. We can see that our proposed method
has lower difference than Log-Demons and DLog-Demons
in regions marked by red rectangles. Table 1 shows the av-
erage MSE and Rel.SSD of our proposed FDLog-Demons
compared to Log-Demons and DLog-Demons. It can be seen
that our proposed method obtains better results than Log-
Demons and DLog-Demons in terms of the average MSE
and Rel.SSD. It shows that our method is superior to other
methods and can obtain high accuracy for image registration.

4. CONCLUSION

This paper presents a novel fractional order derivate based
DLog-Demons for high accurate image registration. In this
method, we design a new fractional order derivate mask to
compute image gradient in place of integer order derivate to
update the displacement field. We integrate the new frac-
tional order derivate into DLog-Demons to obtain high regis-
tration accuracy. The experimental results show that our pro-
posed approach can obtain competitive registration accuracy
and also can speed up the registration process.
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