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ABSTRACT

This paper aims to achieve high-accuracy 3D object detection,
in which we propose a novel Spatial-Channel Attention Net-
work (SCANet), a two-stage detector that takes both LIDAR
point clouds and RGB images as input to generate 3D object
estimates. The first stage is a 3D region proposal network
(RPN) in which we put forward a new Spatial-Channel At-
tention (SCA) module and an Extension Spatial Upsample
(ESU) module. Using the pyramid pooling structure and global
average pooling, the SCA module can not only effectively
incorporate multi-scale and global context information, but
also produce spatial and channel-wise attention to select dis-
criminative features. The ESU module in the decoder can
recover the lost spatial information caused by consecutive
pooling operators to generate reliable 3D region proposals. In
the second stage, we design a new multi-level fusion scheme
for accurate classification and 3D bounding box regression.
Experimental results demonstrate that SCANet achieves state-
of-the-art performance on the challenging KITTI 3D object
detection benchmark.

Index Terms— 3D object detection, attention mechanism,
spatial upsample, fusion scheme

1. INTRODUCTION

In recent years, plenty of research works have promoted the
remarkable progress of 2D object detection which can indicate
the position of each object in the image coordinate system
and their category [1, 2, 3, 4, 5]. However, in numerous
applications like autonomous driving and robot navigation,
using 2D detection results only is insufficient to describe
objects in 3D real-world scenarios. Therefore, 3D object
detection is indispensable in these applications, which can
provide additional depth and orientation information [6, 7, 8].
Also, due to the addition of a third dimension, how to improve
the accuracy of 3D object detection is still a difficult problem.

Based on the fact that LIDAR point clouds are able to
provide more accurate depth information while camera images
have more detailed semantic information, we use both point
clouds and RGB images as input to build a robust 3D object
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detection framework and take three main problems of existing
3D object detectors into consideration.

The first issue is that most existing 3D object detection
methods fail to extract multi-scale and global context fea-
tures to encode local and global information. Meanwhile,
they are short of precise spatial and channel-wise attention
to recalibrate pixel-level and channel-level features. Most
methods still use a single feature map for detection directly
[9]. Some other methods improve the detection accuracy
through feature concatenation [8] and feature pyramid [10, 11].
However, these methods fail to take global information and
attention mechanism into account. Inspired by SENet [12]
and PAN [13], we design a new Spatial-Channel Attention
(SCA) module to simultaneously generate multi-scale and
global context features as well as spatial and channel-wise
attention to detect object more accurately.

The second issue is that many existing methods are unable
to adequately recover the reduced spatial information caused
by continuous downsampling in feature extractors. Due to the
sparsity of point clouds, objects occupy a small number of
pixels in the output feature map, resulting in the loss of spatial
information, which is unfavorable for the detection. Most
3D object detection networks apply bilinear interpolation to
upsample feature maps directly [7] or just combine the features
of corresponding stages [10], which leads to the high-level
features receiving only limited spatial information from the
corresponding low-level features in the encoder. To solve
this issue, we propose an Extension Spatial Upsample (ESU)
module in the decoder to provide finer spatial information by
combining multi-scale shallow layer features.

The last issue is that we need a better fusion scheme to
merge features from the 2D projection of point clouds and
RGB images. Early fusion [14] and late fusion [15] only fuse
features in the input stage and the prediction stage, respectively,
which lacks enough interactions among features. Inspired by
deep fusion [7], which alternately performs feature transfor-
mation and feature fusion, we propose multi-level fusion to
enable more interactions among different view features.

In summary, there are four contributions in this paper:
• We propose a Spatial-Channel Attention (SCA) module to

capture multi-scale and global context information while
obtaining both spatial attention and channel-wise attention
to recalibrate features. To the best of our knowledge, this
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Fig. 1. Overview of the Spatial-Channel Attention Network (SCANet).

is the first work of applying the attention mechanism in 3D
object detection task.

• We present an Extension Spatial Upsample (ESU) module
to enrich the spatial information of the high-level features
by combining multi-scale low-level features.

• We design a new multi-level fusion scheme to enable more
interactions among features from different views so that we
can fuse them better.

• Combining the three modules mentioned above, we propose
a Spatial-Channel Attention Network(SCANet) for 3D ob-
ject detection. Experimental results show that our method
achieves state-of-the-art results on the KITTI 3D object
detection benchmark.

2. SPATIAL-CHANNEL ATTENTION NETWORK

The proposed method is depicted in Fig. 1. Firstly, the feature
extractor takes the bird’s eye view maps of point clouds and
RGB images as input and then passes the extracted features
to region proposal network to generate 3D region proposals.
Next, the region-based features are fused by the multi-level
fusion layers. Finally, the fused features are used to predict
object class and regress oriented 3D bounding boxes.

2.1. 3D Point Clouds Representation

3D point clouds are sparse and unstructured. We adopt a
compact representation by projecting 3D point clouds into
the bird’s eye view (BEV) [7]. We form a six-channel BEV
map in which the first five channels encode height information
and the last one encodes intensity information. We project
point clouds into a 2D map and then discretize them with a
resolution of 0.1m. For the height channels, we divide the point
cloud into five equal slices, each of which produces a height
map representing the maximum height of the points in each
cell. For the intensity channel, we compute it as the number
of points in each cell for the whole point cloud. To obtain
homogeneous and significative values among all cells, we
normalize the intensity feature map by the maximum possible
number of points as min(1.0, log(N+1)

log16 ), which inspired by
Log function conversion normalization method.
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Fig. 2. Schematic diagram of Spatial-Channel Attention
module. (a) Spatial-Channel Attention module structure. The
numbers in the convolution boxes represent the kernel size and
the number of output channels. (b) Diagrammatic drawing of
the fusion of spatial attention and channel-wise attention.

2.2. Feature Extractor

The proposed network has two identical encoder-decoder fea-
ture extractors, one for the bird’s eye view of point clouds and
the other for the RGB images. We use the VGG-16 as the
encoder network but with two modifications: the channels are
reduced to half of the original and the network is cut off at
the conv-4 layer. Then the Spatial-Channel Attention module
is used to extract multi-scale and global context features to
encode local and global information. Besides, it can produce
both spatial attention and channel-wise attention, which is
capable of recalibrating features spatially and channel-wisely,
thus we can strengthen the discriminative features and restrain
the indiscriminative features. Finally, we design an Exten-
sion Spatial Upsample module, which combines adjacent low-
resolution feature maps as multi-scale low-level features to
help high-level features gain finer spatial information.
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Fig. 3. Schematic diagram of Multi-level Fusion methods.

Spatial-Channel Attention (SCA). The Spatial-Channel
Attention module consists of spatial attention block and
channel-wise attention block, as shown in Fig. 2(a). The
spatial attention block adopts pyramid pooling structure which
includes three different pyramid scales and sequentially uses
7 × 7, 5 × 5, and 3 × 3 convolutions. Instead of directly
upsampling the low-dimension feature maps to the original
size separately, we gradually upsample and merge different
scales to obtain more precise multi-scale information. The
spatial attention block finally outputs a single channel attention
map incorporating multi-scale context information, which is
then multiplied by the original features that are compressed by
a 1× 1 convolution to reweight features spatially. On the other
hand, the channel-wise attention block applies global pooling
to provide global context information and output channel-wise
attention map to select the features channel-wisely. Finally,
spatial attention is fused with channel-wise attention, as
illustrated in Fig. 2(b).

Extension Spatial Upsample (ESU). Our Extension Spa-
tial Upsample module is designed to provide detailed spatial
information to high-level features in the decoder by combining
multi-scale low-level features in the encoder. We first use a
3×3 convolution with a stride of 2 to downsample the features
from Conv layer n-1 in the encoder and use another 3 × 3
convolution with a stride of 1 to refine it. Then two 3 × 3
convolutions with a stride of 1 are performed on the features
from Conv layer n in the encoder. After that, we add the
features from the two different layers as the multi-scale low-
level features. Finally, we concatenate the low-level features
with corresponding high-level features and further fuse them
by a 3× 3 convolution.

2.3. 3D Region Proposal Network

Given the features from the bird’s eye view maps and RGB
images, RPN first fuses them via an element-wise mean opera-
tion and then generates 3D region proposals by regressing the
difference between a set of 3D prior boxes and the ground truth
boxes. Each 3D prior box is parameterized by (x, y, z, l, w, h),
which encodes the center coordinates and dimensions of the
anchor. (x, y) is the different position in the bird’s eye view
with a resolution of 0.5 meters, and z can be computed by the
camera height above the ground plane. (l, w, h) is provided
by clustering ground truth bounding box sizes in the training
set. During training, we use a multi-task loss following Fast
R-CNN [2] which includes a cross-entropy loss for binary
classification and a smooth L1 loss for regression.

Table 1. Performance comparison on KITTI validation set:
Average Precision (AP3D) (in %) of 3D boxes.

Model Data 3D Detection
Easy Moderate Hard

Mono3D [9] Mono 2.53 2.31 2.31
3DOP [17] Stereo 6.55 5.07 4.10

VeloFCN [18] LIDAR 15.20 13.66 15.98
MV3D [7] LIDAR+Mono 71.29 62.68 56.56

VoxelNet [8] LIDAR 81.97 65.46 62.85
SCANet (ours) LIDAR+Mono 83.63 74.47 67.78

2.4. Header Detection Network

We first project the 3D proposals into the bird’s eye view and
the RGB image plane. Then due to the different dimensions of
features from them, we apply RoI pooling [2] to obtain feature
crops with the same size of 7 × 7. A new multi-level fusion
scheme is proposed to fuse the region-based feature crops.
Given the fused features, we regress oriented 3D bounding
boxes from the 3D proposals.

Multi-level Fusion. There are three main fusion methods:
early fusion, late fusion, and deep fusion. Early fusion [14]
fuses multi-view features in the input stage and then uses a
single sub-network to predict. Late fusion [15] first uses mul-
tiple sub-networks to learn feature transformation separately
and then merges features in the prediction stages. Unlike the
first two fusion methods, deep fusion [7] alternately performs
feature transformation and feature fusion. Inspired by deep
fusion, we propose a new multi-level fusion scheme. We first
merge the features from the bird’s eye view and RGB images
by element-wise mean operation and then concatenate them as
the input of the next step, which can enable more interactions
among different view features, as described in Fig. 3.

3D Bounding Box Regression. The 3D proposals are pa-
rameterized by (x1, x2, x3, x4, y1, y2, y3, y4, h1, h2) that en-
codes the coordinates of 4 corners and 2 heights above ground
plane. Similar to the RPN, we apply a multi-task loss combin-
ing a cross-entropy loss for classification and a smooth L1 loss
for regression to jointly predict object categories and oriented
3D bounding boxes.

3. EXPERIMENTS

We evaluate our SCANet on the challenging KITTI 3D object
detection benchmark [16] which contains 7481 training images
and 7518 testing images along with point clouds.

Implementation Details and Metrics. We train the net-
work in an end-to-end fashion and use ADAM optimizer for
roundly 130K iterations on a NVIDIA 1080Ti GPU with an
initial learning rate of 0.0001, which decays exponentially
every 20K iterations with a decay factor of 0.9. In our ex-
periments, we focus on the car category as KITTI provides
enough car instances to train deep network. Following the
KITTI official setting, we do the evaluation on three difficulty
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Table 2. Results of Spatial-Channel Attention module and
Extension Spatial Upsample module on KITTI validation set.

Model 3D Detection
Easy Moderate Hard

VGG16+ESU 77.89 68.28 66.23
VGG16+SE [12]+ESU 77.23 73.15 67.55

VGG16+PPM [19]+ESU 77.86 73.44 67.17
VGG16+FPA [13]+ESU 83.56 68.12 67.40

VGG16+SCA+ESU 83.63 74.47 67.78
VGG16+SCA 67.70 60.68 56.05

VGG16+SCA+BI 71.56 62.10 56.28
VGG16+SCA+ESU 83.63 74.47 67.78

Table 3. Performance comparison of different fusion methods
on KITTI validation set.

Model 3D Detection
Easy Moderate Hard

Late Fusion [15] 74.94 64.30 63.82
Early Fusion [14] 83.27 68.45 67.29
Deep fusion [7] 83.32 73.61 67.18

Multi-level Fusion 83.63 74.47 67.78

regimes: easy, moderate, and hard, which depend on the object
size, occlusion state, and truncation level. We use Average
Precision (AP3D) computed at 0.7 IoU in all experiments for
full 3D bounding boxes evaluation.

3.1. Evaluation on KITTI Validation Set

Like many methods, we subdivide the KITTI training data into
a training set and a validation set with a ratio of about 1:1.

Spatial-Channel Attention Network (SCANet). We
first compare our SCANet with other state-of-the-art methods
which publicly provide detection on the KITTI validation set.
As shown in Table 1, our SCANet exceeds all the competing
methods across all the three difficulty regimes, which suggests
that SCANet is effective to detect objects of different scales.

Spatial-Channel Attention (SCA). The results are pre-
sented in table 2. Take the moderate difficulty level as an ex-
ample, using the SCA modules, the accuracy can be improved
from 68.28% to 74.47%, which shows that the SCA module
can significantly improve performance. Besides, we compare
our SCA module with other context modules or attention
modules. We can see that the performance of those modules is
not balanced at three difficulty levels while our SCA module
consistently outperforms those modules across all difficulty
levels, which demonstrate that our SCA module can extract
spatial and channel-wise attention information effectively.

Extension Spatial Upsample (ESU). The results are
shown in Table 2. Take the moderate difficulty level as
an example, the VGG16 baseline combining with the SCA
module achieves an average precision of 60.68%. Using
bilinear interpolation to upsample features merely improves
performance by 1.42% while using our ESU module to
upsample features can significantly improve performance by

Table 4. Performance on KITTI test set.
Benchmark Easy Moderate Hard

Car (3D Detection) 76.09 66.30 58.68

Fig. 4. Qualitative results.

13.79%, which demonstrates that the ESU module is helpful
to recover spatial information for accurate detection.

Multi-level Fusion. The results are summarized in Table
3, which attest that our multi-level fusion scheme can fuse
features from different views effectively and outperforms other
fusion methods.

3.2. Benchmark Results

To evaluate our SCANet on the KITTI test set, we submit the
results to the KITTI 3D object detection official server. The
results are shown in Table 4.

Finally, the qualitative results are depicted in Fig. 4. It can
be seen that in the case of small objects and multiple objects,
our method can accurately detect all objects, which indicates
that our SCANet is a robust 3D detector.

4. CONCLUSION

In this paper, we have proposed a novel effective framework
named Spatial-Channel Attention Network for challenging 3D
object detection. Firstly, we propose a new Spatial-Channel
Attention module, which is capable of encoding multi-scale
and global context information and producing spatial and
channel-wise attention to select discriminative features spa-
tially and channel-wisely. Secondly, to generate reliable 3D
region proposals, we design an Extension Spatial Upsample
module, which uses multi-scale low-level features to guide
high-level features to recover spatial information. Finally, a
new multi-level fusion scheme is presented to fuse multi-view
features for final oriented 3D bounding box regression. Our
experimental results show that the proposed method outper-
forms the state-of-the-art approaches on the KITTI 3D object
detection benchmark while running at 11 FPS on an NVIDIA
1080Ti GPU.
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