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ABSTRACT

Recent PointNet-family hand pose methods have the advantages of
high pose estimation performance and small model size, and it is a
key problem to get effective sample points for PointNet-family meth-
ods. In this paper, we propose a two-stage coarse to fine hand pose
estimation method, which belongs to PointNet-family methods and
explores a new sample point strategy. In the first stage, we use 3D
coordinate and surface normal of normalized point cloud as input
to regress coarse hand joints. In the second stage, we use the hand
joints in the first stage as the initial sample points to refine the hand
joints. Experiments on widely used datasets demonstrate that using
joints as sample points is more effective and our method achieves
top-rank performance.

Index Terms— Hand pose estimation, point cloud CNN

1. INTRODUCTION

Accurate hand pose estimation is of great importance in human-
computer interactions and augmented reality [1], especially appli-
cations using hand gestures as input such as Oculus Rift, Microsoft
Hololense and HTC Vive etc. Recently, hand pose estimation from
depth has progressed rapidly, while it is still a challenging task to re-
cover accurate and real-time 3D hand pose due to the self-occlusion
and high degree-of-freedom of hand articulations.

Previous convolutional neural network (CNN) based hand pose
estimation methods using depth images can be classified into three
types according to the input modality of CNNs. 1) 2D CNN based
methods [2, 3, 4, 5, 6, 7]. The methods extract features from depth
using 2D CNN, and estimate hand pose using regression. As ob-
served in [8], due to the domain difference between 2D depth map
and 3D joint, it is difficult to train an effective CNN to learn the
mapping between depth and 3D joints. 2) 3D CNN based methods
[9, 10, 11]. These methods encode depth as volumetric features, feed
the volumtric features to 3D CNN to get hand skeleton joints using
regression [9, 10] or classification [11]. These methods can encode
effective volumetric features, which are useful for hand pose esti-
mation, and can get high quality hand pose performance, while they
have larger number of parameters compared with the methods using
depth as input and may not be suitable for devices with small display
memories such as mobile devices. 3) Point cloud based methods
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[12, 13, 14]. These methods encode a depth image as point clouds,
and feed point clouds into a point cloud network to get the hand
skeleton joints. These methods are usually built upon PointNet [15]
or PointNet++ [16], which have the advantage of small number of
network weights. These methods use multiple perceptron machine
(MLP) to abstract point information, which loses part of 3D context
information of point clouds, thus the performance of hand pose esti-
mation is still not satisfactory. We find that the performance of these
methods heavily relies on the sample point of the first layer of net-
work. Thus, it is a key problem to select effective sample points that
can enhance the performance of hand pose estimation.

In this work, we propose a two-stage PointNet framework for
hand pose estimation. We convert depth into point cloud, and then
point cloud is downsampled and normalized following the standard
processing pipelines in [16, 12, 14]. In the first stage of our net-
work, we use 3D coordinate and surface normal of normalized point
cloud as input to regress coarse hand joints. In the second stage, we
use the hand joints in the first stage and point cloud as input to fur-
ther refine the hand joints. The main difference of the two stages is
the initial sample points. The first stage uses random sample points,
and the second stage uses rough joints as sample point. Using hand
joints as sample points extracts the pose-index features (similar to
[17]) and benefits the performance of hand pose estimation. Experi-
ments show that our two-stage network can consistently improve the
performance of PointNet-based hand pose estimations [14], and get
very competitive performance in two widely-used datasets. More-
over, our method has advantages of small network parameters, and
can inspire hand gesture applications on mobile devices etc.

Our main contributions are summarized as follows:

1. We propose a coarse to fine network to regress hand joint
from point cloud. In the fine joint regression, we select hand
joints and additional points as sample point, which encodes
pose-index features and benefit the hand pose estimation task.
As a comparison, the coarse joint regression use randomly
sampled point as same as PointNet-family hand pose works.

2. Our work achieves top-ranked performance on two widely
used hand pose dataset, and the model weight is small. Our
work can inspire the related research in this field.

2. RELATED WORK

CNN-based Hand Pose Estimation. Hand pose estimation from
depth image can be classified three categories: discriminate meth-
ods, generative methods and hybrid methods. The discriminate
methods [3, 4, 5, 6, 7, 12, 13, 14] set network structure and optimize
network parameter by training data to estimate hand pose .The gen-
erative methods [18, 19, 20] estimate hand pose by fitting a hand
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Fig. 1. Overview of our two-stage network. We feed point cloud and surface normal to the first network to get coarse hand joints, then feed
coase hand joints and point cloud to the second network to refine hand joint locations.

model. The hybrid methods [4, 21, 6, 7, 22], estimate hand pose
by a generative hand model from training data and a model-based
optimization.

Recent work on hand pose estimation has shift to deep learning.
There are two pose estimation solutions from depth image: 1) Es-
timate hand joints via classified from each joints’ heat map, which
is probability map of the joint belong to each pixel [4, 5]. Tomp-
son et al.[4] estimate hand joints only by single-view 2D heat-map
which lack 3D information, to overcome this weakness, Ge et al.[5]
project the depth image onto multiple views and estimate 3D hand
pose from multi-view heat-maps. 2) Predict 3D coordinates of joints
via regression [3, 23]. Zhou et al.[23] first integrate a kinematic
layer into CNN regression model for hand pose estimation, which
ensures the geometric validity of hand pose. Oberweger et al.[3]
use principle component analysis (PCA) to reduce the dimension of
hand pose parameters, use a network to regress the low-dimensional
parameters, and reconstruct the hand pose by multiplying the low-
dimensional parameters with PCA basis. Oberweger et al.[6] also
propose a feedback loop to refine hand joints iteratively. For lever-
aging more spatial information from depth image, 3D-CNN are also
applied for hand joints estimation [9, 10, 11]. Deng et al.[9] pro-
pose a Hand3D methods to regress hand joints from TSDF volume,
at same time this methods use a 3D FCN to refine the TSDF which
completes missing depth. Moon et al.[11] propose the V2V-PoseNet
to estimate hand joints by 3D heat map via classification.

Point Cloud CNNs and Applications in Hand Pose Estimation.
Point cloud is a subset of points from an Euclidean space. It has
three main properties: disordered, interaction among points and
invariance under transformation. Qi et al.propose PointNet [15]
and PointNet++ [16], two seminal CNN network architectures on
point cloud. PointNet and PointNet++ both use multiple percep-
tron machine (MLP) to predict on every isolated point feature , and
extract representative features from the whole point cloud using
max-pooing. Wang et al.[24] propose a novel operation for point
cloud, Edge-Conv, to capture more effective local geometric features
than MLP. Klokov et al.[25] do not process directly on unordered
point clouds, and they construct a point cloud of a certain order
structure by kd-tree and learn feature on this structured point cloud.
Xu et al.[26] propose a new convolution unit, namely SpiderConv,
which extends convolutional operations from regular grids to irreg-
ular point sets to extract features from point set. Inspired by Qi et
al.[15, 16], several recent work use PointNet-family networks to
estimate hand pose. Ge et al.[12] estimate hand pose on raw point

cloud by a hierarchy network. Ge et al.[14] propose a hand pose
estimation method using 3D joint heat-maps, in which point-wise
estimations are used to estimate 3D joint locations with weighted
fusion. Chen et al.[13] predict hand part segmentation first, and then
use per-point 3D coordinate and part segmentation to estimate hand
joints.

Our method differs from previous methods, especially recent
PointNet-family hand pose estimation methods [12, 14] as follows:
we use a cascaded network, which uses the output of the first stage
to refine the second stage output. In the second stage pose regres-
sion, we select hand joints and additional points as sample points,
which is more effective than randomly sampled points in previous
PointNet-based methods.

3. METHOD

We aim to regress hand joints from point cloud. The pipeline of
our network is shown in Fig. 1. First, we transform a depth image
into point cloud, and normalize the scale and principal direction.
Then we feed the normalized point cloud into two-stage coarse-to-
fine network to recover the hand pose. The coarse joint regression
gets initial joint positions, and the fine joint regression uses the initial
joints and point cloud as input and refine the joint estimation.

3.1. Data Processing

In the data processing, we first convert a hand depth image into point
cloud. The whole 3D point cloud is downsampled to N points to re-
duce data redundancy and improve computation efficiency. In order
to handle scale diversity, we normalize point cloud in an oriented
bounding box. We scale the point cloud scale between [−1, 1] in
each axis. In order to handle the large variation of palm orientations,
we conduct 3D derotation to transform the point cloud to a canon-
ical direction. We use principal component analysis (PCA) to find
two principal directions [dx, dy] from 3D hand point cloud. Then
use the product of the direction vectors of the two principal direc-
tions to find the third orthogonal direction dz = dx × dy . The point
cloud Pnorm is obtained by rotating the scaled point cloud X using
the rotation transformation matrix R = [dz, dx, dy]

T . The output
Pnorm is invariant to scale and orientation of the input point cloud,
and helps to improve the robustness against diversity inputs. In this
work, the input of our network is Xnorm = [Pnorm,Nnorm] [14],
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which is a set of normalized point Pnorm and the surface normal
vector Nnorm at each point.

Although we aim to regress hand joints J from network, we find
that the degree of freedom of human hand is less than hand joints
parameters. Inspired by DeepPrior [3] and HandPointNet [12], we
learn low dimensional subspace of hand pose with principal compo-
nent analysis (PCA), which can enforce the validity of hand pose bet-
ter. We learn a principle components V = [v1,v2, ...,vm]T (m =
42) and data mean m from the ground truth hand joints. The ground
truth low dimensional feature w could be calculated by

w = VT (J−m) (1)

After we learn a network to estimate ŵ from point cloud, the
hand pose can be reconstructed by back-projection into the joint
space as follows

Ĵ = Vŵ +m (2)

3.2. Network Details

We adopt a two-stage framework to estimate hand pose. The coarse
joint regression network uses two Point Sample & Group + Pointset
Abstract units [16], and the fine joint regression network adopts one
Point Sample & Group + Pointset Abstract unit. Each Point Sample
& Group + Pointset Abstract unit is followed with fully connected
layers to predict hand joint positions.
Point Sampling + Grouping. Point sampling [16] selects a sub-
set of point from the input, which can represent the local structure
in point cloud, and grouping [16] constructs local point sets using
neighbor points of the output of point sampling. We use farthest
point sampling (FPS) [16] for point sampling, and use K-nearest
neighbor clustering (KNN) for grouping.

FPS randomly selects a point in the point cloud, and then ex-
tracts a point as the starting point from the remaining point cloud,
which is the farthest from the starting point. Then, add the sampling
point to the sampled point list and continue to iteratively sample the
point, which is farthest from the sampled point list. In the coarse
joint regression, we use two point sampling layers, the first sampling
downsamples from the input 1024 input points to 512 points, and the
second sampling downsamples again to 128 points. After each point
sampling, we use KNN clustering (in our experiment, K = 64) on
the sampling points. In order to ensure the clustering density, the
clustering is also enforced with a radius limit.
Coarse Regression. After each clustering, the point cloud will be
fed to a multi-layer perceptron model (MLP) in the network to in-
crease the features channels of each point, and then extract the point
cloud global feature by feeding each cluster into the max-pooling
layer. Then the generated features and sample points are concate-
nated and fed to the next clustering layer and regress the hand joints
through a fully connected layer.

When we conduct a complicated regression problem, it is nec-
essary to make the network deeper for extracting effective features.
However, it is quite difficult to supervise entire network. Inspired
by [27], we add one more intermediate hand pose supervision into
the coarse joint regression network, which is helpful to improve the
performance (refer to Table 1).
Joint Clustering and Hand Pose Regression. The joint prediction
using coarse regression is only rough estimation, but the rough joints
can guide us to get contain pose-indexed feature (similar to [17])
to refine the joint estimation. We utilize rough joints as part of the
sample points to cluster neighboring point (refer to yellow regions in
Fig. 2), feed the point groups into joint regression net, and then get
the final hand joint predictions. At clustering step, we use additional

Group

Fig. 2. Group with joint: Use the joint estimation in the first stage
as sample point to group point in the hand point cloud. Since there
is only one joint on palm, we also add five points between root joints
of five finger and wrist point to the sample points.

five sample points between finger root joint and palm joint (refer
to the red region in Fig. 2) to enforce the spatial structure of the
sampled points. After that, we group K = 64 nearest points of
the sample points (joints + additional five points), which the same
strategy of coarse net. In the fine joint regression network, we have
much sparse sample points than in the coarse regression network. In
order to maintain the 3D spatial structure of the point cloud well,
we do not cluster radius in Grouping and search K-nearest neighbor
points. After Grouping base on joints, we use point set abstraction
layer to increase per-point feature channel, and recover hand joints
using joint regression layer.
Loss Function. We have two joint regression loss functions Lj1

and Lj2 in the coarse joint regression network, and one joint regres-
sion loss function Lj3 in the fine joint regression network. The loss
functions Lj1 , Lj1 and Lj3 are all defined using the Euclidean dis-
tance between the estimated low-dimensional joint feature ŵ and the
ground truth w. The total loss function L is defined as follows

L = αLj1 + βLj2 + γLj3 (3)

where α, β, γ are the weights of the loss functions.

3.3. Implementation Detail

We implement the experiment on a workstation with two Intel Xeon
E5-2667v4 CPU, 256GB of RAM and an NVIDIA P100 GPU. The
deep neural network base on Pytorch framework. When training the
deep neural network, we use ADAM optimizer with initial learning
rate 0.001, batch size 32. The learning rate is divided by 10 for
every 10 epochs. The training is stop after 30 epochs to prevent
over-fitting.

4. EXPERIMENT

We evaluate our method on two-widely hand pose datasets: NYU
hand dataset [4] and MSRA hand dataset [17].

4.1. Dataset

NYU Hand Dataset [4] contains three views of hand pose, each
view contains 72,757 frames training data and contains 8,252 testing
frames. The dataset is annotated with 36 ground truth hand joints,
but we evaluate the performance using 21 hand joints as in [4].
MSRA Hand Dataset [17] contains 9 subjects each subject with 17
hand gestures, each hand gestures contain 500 frames, the datsaet
contains annotations of 21 hand skeleton joints. We adopt standard
subject-independent nine-fold cross validation, in which we choose
eight subjects as training data and test on the remaining one subject.
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(a)

(b)
Fig. 3. Comparison with state-of-the-art methods on NYU (top) and
MSRA (bottom) hand dataset.

Ground Truth Ours HandPointnet

Fig. 4. Quantitative comparison on MSRA hand dataset.

4.2. Evaluation Metrics

We use two standard metrics to evaluate the performance of 3D hand
pose estimation method: 1) Per-joint mean error distance over all
test frames and overall mean error distance for all joint on all test
frames; 2) The proportion of good frames in which the worst joint
error is below a threshold [28].

4.3. Comparisons with State-of-the-art Methods

NYU Hand Dataset. We compare our methods with 14 state-of-
the-art methods: DeepPrior [29], DeepModel [23], FeedBack [6],
REN9x6x6 [24], and GUO-Basic [30], Pose-REN [31], DenseReg
[32], 3D-CNN [10], DeepPrior++ [3], SHPR [13], HandPointnet
[14], and point-to-point [12]. In the comparison, SHPR, HandPoint-
net and point-to-point are the state-of-the-art PointNet-based hand
pose estimation methods, 3D CNN [10] is 3D CNN method using
volume as input, and the other methods are all 2D CNN based meth-
ods. Fig. 3 (a) shows the proportion of good frames over different
error thresholds and the pre-joint mean error distance of different
methods on NYU dataset.
MSRA Hand Dataset. We compare our methods with 4 state-of-

Table 1. The impact of refinement and loss weights on NYU dataset.
Method α β γ Mean error

w/o refine 0 1 / 10.5mm
with refine 0 1 1 9.55mm
with refine 1 1 1 9.73mm
with refine 0.33 1 2 9.47mm
with refine 0.5 1 1 9.42mm

with refine+3view 0.5 1 1 8.48mm

the-art methods. Fig. 3 (b) shows the proportion of good frames
over different error thresholds and the pre-joint mean error distance
of different methods on MSRA dataset.
Experiment Analysis. As shown in Fig. 3, our method outper-
forms almost all the methods on NYU and MSRA datasets. In
NYU dataset, V2V [11] is only 0.07 mm better than our method,
but the model size of V2V (457MB) is more than 13 times of our
model (34MB), FeatureMapping [33] is about 1 mm better than
our method, but it uses additional 500K synthetic dataset than our
method and it further requires pairs of ground truth and synthetic
depth images for training, which is not available in most dataset
except NYU data. Thus, FeatureMapping [33] can not provide the
performance on the other hand datasets. Our method is 1.2mm,
0.7mm, 0.07mm worse than the top-3 methods (DenseReg [32],
Point2Point [12] and Handpointnet [14]) on MSRA dataset, while
our method is 1.8mm, 0.5mm, 2.1mm better than them on NYU
dataset. Fig. 4 shows the comparison with HandPointNet [14],
and we can observe that our method performs better. In summary,
our method can achieve almost the state-the-art performance in both
dataset using small model size, which can benefit many applications.
Timing. Our methods runs in real-time at 70+fps. The average run-
ning time per frame is 14.3 ms, 10.1 ms for depth to point cloud
conversion, point sampling and surface normal calculation, 4.2 ms
for hand pose prediction.

4.4. Self Comparison

The Effect of Cascade Refinement. As shown in Table 1, cascade
refinement reduces the mean error by 0.95 mm (10.5 mm vs. 9.55
mm), which confirms that our coarse to fine strategy is useful.
The Effect of Loss Weights. Loss weight is important for multi-
task CNNs. If we set β = γ = 1 and select α = 0, 0.5, 1, we find
the mean joint error varies as 9.55, 9.42 and 9.73. Thus, we select
α = 0.5, β = γ = 1 as loss weights.
The Effect of Data Augmentation. For NYU dataset, we have
depth images from three views. If we use the training data from
three views, the mean joint error of our method reduces 1 mm (9.42
mm vs. 8.48 mm). Therefore, data augmentation with all the data
from three views is helpful.

5. CONCLUSION

In this paper, we propose a two-stage coarse to fine hand pose esti-
mation method, which belongs to PointNet family methods. We first
use hand pointnet to get initial hand pose, and then use the initial
hand joints as sample points for the fine joint regression stage. Ex-
periments on NYU and MSRA hand datasets show that our method
can achieve very competitive hand pose performance and run in real-
time. Our work can inspire related researches such as augmented
reality using hand gesture as input etc.
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