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ABSTRACT
In this paper, we present a conceptually novel framework for
vehicle pose estimation from given RGB images. Our ap-
proach extends Mask R-CNN by adding two branches for
coarse viewpoint estimation and keypoint detection, in par-
allel with the existing branches for mask segmentation and
2D object detection in the training stage. Capitalizing on the
estimated mask and the mask renderings from ShapeNet in
the inference stage, we propose a mask optimization scheme
to recover the vehicle poses from 2D-3D correspondences.
Then, we enforce geometric constraint on these vehicle poses
in a coarse-to-fine hybrid approach for robustness. Experi-
mentally, our framework outperforms the state-of-the-art ap-
proaches on the very challenging PASCAL3D+ dataset.

Index Terms— Multi-task R-CNN, Viewpoint, Keypoint,
3D Model, Mask

1. INTRODUCTION

Pose estimation has been widely studied over a long period
of time because of its importance in a variety of applications
such as robotic manipulation, automatic driving, etc. Re-
cently, impressive work [1][2] in pose estimation are based
on the CNN architecture. These methods estimate the pose
using a PnP algorithm [3] that requires the correct detection
of object 2D keypoints or 2D projections of the objects 3D
bounding box corners. However, localizing them with a con-
vnet sometimes leads to false detections since some of vehi-
cle parts have considerably same characteristics, such as right
wheels or left wheels, right headlight or left headlight, etc.
Meanwhile, the pose optimization sometimes fails because of
the huge shape variation, as shown in Figure 1.

For the symmetry of vehicle poses, we observe an in-
teresting phenomenon. Given an image, a hidden keypoint
corresponds to a convolutional response map with higher en-
tropy of information than the visible keypoint. Based on this
∗National Natural Science Foundation of China (61671336, 61671332,

U1736206)
†Hubei Province Technological Innovation Major Project (2017AAA123)

Fig. 1. Similar characteristics at different locations (left) and
the shape variation (right). The above images are from PAS-
CAL3D+ dataset.

maximum entropy principle, we enforce geometric constraint
on the pose estimation for robustness. Another issue is the
variability of vehicle shapes. Since the 2D-3D correspon-
dences exist, the numerous renderings under multiple poses
from ShapeNet [4] provide an effective prior for 2D vehicle
shapes. Based on this useful prior, we propose a multi-stage
mask optimization scheme to recover the vehicle poses.

In the next section, related work is reviewed. We present
our proposed method in Section 3 and evaluate our perfor-
mance on the very challenging PASCAL3D+ dataset [5] in
Section 4.

2. RELATED WORK

R-CNN: The CNN based networks have proven their effec-
tiveness in many computer vision tasks. Due to the success of
CNN, R-CNN [6] is proposed, which attends a large amounts
of candidate object regions and provides according confi-
dence score of interest regions computed on deep feature
maps. Faster R-CNN [7] is the extension of R-CNN that
learns the attention mechanism with a Region Proposal Net-
work (RPN). Mask R-CNN [8] extends Faster R-CNN by
adding the mask branch for predicting an object mask. In this
work, Mask R-CNN is extended by our Multi-task R-CNN
that provides vehicle detections, binary masks, coarse view-
points and keypoints.
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Fig. 2. Overview of our approach.

Pose Estimation: There are two ways to describe the pose
of object: viewpoint based on global appearance and a fixed
set of keypoints based on local appearance. Pose estimation
is usually associated with viewpoint or keypoint based on R-
CNN networks [1][2][9][10][11][12][13][14]. For viewpoint,
these methods [9][12][13][14] generally divide the viewing
sphere in several bins where each bin corresponds to a class.
For keypoint, [10] introduces the viewpoint as the global ap-
pearance and infers the final keypoint locations based on 2D
object analysis. To go further than 2D object reasoning, many
methods [1][2][11] introduce 3D models and are able to give
a detailed 3D object representation. These methods gener-
ally have a base R-CNN network providing object detections,
semantic keypoints [1] or 2D projections of the objects 3D
bounding box corners [2][11] for pose estimation and 3D
model retrieval.

3. APPROACH

In this section, we describe the proposed approach for pose
estimation from RGB images. Our approach is composed
of three parts. First, the input image is passed through a
Multi-task R-CNN network which outputs 2D detections, bi-
nary masks, coarse viewpoints and keypoints. The Multi-task
R-CNN network architecture is detailed in Section 3.2. The
second part is the inference using mask matching, detailed in
Section 3.3. Additionally, associated with this module, the
3D model dataset and 2D binary mask dataset are detailed in
Section 3.1. The last part is a coarse-to-fine procedure, mainly

based on the maximum entropy principle, detailed in 3.4. The
overview of our approach is illustrated in Figure 2.

3.1. Template Dataset

We use ShapeNet dataset [4] of M 3D models corresponding
to various types of vehicles. For each 3D model m, its shape
aligned in canonical view is denoted as S̄3D

m . The set of 2D
binary mask templates T̄2D

m = {t1, t2, .., tn} associated to the
3D shape model S̄3D

m are renderings from diverse viewpoints
by render pipeline [9], where tn corresponds to the nth binary
mask template aligned in current viewpoint. By adopting a
fine-grained (N=360) rendering viewpoints formulation, the
2D binary mask template dataset {T̄2D

m }m∈{1,2,..,M} associ-
ated to the M 3D models totally has 2.7 million binary mask
templates. Figure 2 shows some examples from 3D shape
dataset {S̄3D

m }m∈{1,2,..,M} and the 2D binary mask template
dataset {T̄2D

m }m∈{1,2,..,M}.

3.2. Multi-task R-CNN Network

Our approach follows the spirit of Mask R-CNN, and makes
two minor modifications to Mask R-CNN segmentation sys-
tem. The first modification is the extension of Mask R-CNN
by adding two branches for coarse viewpoint estimation and
keypoint detection, in parallel with the existing branches for
mask segmentation and 2D object detection. This is different
from [10] in that global appearance is used in the inference
stage, while our approach introduces viewpoint supervision
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in the training stage for geometric constraint. Another mod-
ification is the shape constraint on keypoints detection. In
contrast to the approach [1], the keypoints are limited within
the mask instead of the bounding boxes.

Here, we train our Multi-task R-CNN on data from
[5][15][16]. We detail all tasks of the Multi-task R-CNN
network and the associated loss functions. Formally, during
training, the network joint optimization minimizes the loss
function L = Ldet + Lmask + Lvp + Lkp on each sampled
Region of Interest (RoI).

Detection loss: The detection loss Ldet is associated with
the classification Lcls and bounding box Lbox that defined in
Faster R-CNN [7].

Mask loss: The predicted mask representation from each
RoI is parametrized as a single binary mask of resolution m×
m. We follow the definition of mask loss Lmask defined in
Mask R-CNN [8].

Viewpoint loss: The predicted viewpoint representation
is parametrized as a tuple of (θ, φ, ψ) of camera rotation pa-
rameters, where θ is azimuth angle, φ is elevation angle and ψ
is cyclorotation angle. Compared with regression-based for-
mulations [17], we adopt a fine-grained viewpoint classifica-
tion formulation which typically has 360 discrete bins [9][10]
for higher accuracy. We use a geometric structure aware loss
function defined in [9] for geometric constraint.

Keypoint loss: The keypoint loss Lkp is related to the
ground-truth class label p∗c , defined as follows:

Lkp = λkp

Nc∑
i=1

p∗cP (K∗i −Ki), (1)

where P is the binary cross-entropy loss, and λkp is the regu-
larization parameter of keypoint loss. The ground-truth class
label p∗c is 1 if the object proposal is vehicle and 0 otherwise.
For each ofNc keypoints, the ground-truth keypoint labelK∗i
is denoted as a one-hot m×m binary mask (m=56) and only a
single pixel is denoted as foreground. Likewise, the predicted
keypoint response map Ki is an m2-way softmax output.

3.3. Mask Matching Inference

We use the Multi-task R-CNN network outputs, the 3D model
dataset S̄3D

m and the mask template dataset T̄2D
m defined in 3.1

to recover the pose. Given a vehicle binary mask provided
by Multi-task R-CNN network, the inference consists in two
steps. In the first step, the mask output is cropped to its mask
boundaries, denoted as T̄c. In the second step, we minimizes
the Euclidean distance E between the cropped mask T̄c and
the 2D binary mask templates {T̄2D

m }m∈{1,2,..,M}:

t = arg min
m∈{1,2,..,M}

E(T̄2D
m , T̄c). (2)

Here, we choose the top k minimum distance as the coarse
binary masks {tk}. Although the resulting masks are con-

Fig. 3. The mask matching inference. The columns show the
query RGB image from PASCAL3D+; the mask provided by
our Multi-task R-CNN; the cropped mask T̄c; the symmetry
of vehicle poses in mask matching. The poses of the result-
ing matches are often far apart, due to the factor of vehicle
symmetry (eg. front facing vs back facing car).

sidering similar, the symmetry of vehicle poses remains, as
illustrated in Figure 3.

3.4. Coarse-to-fine Procedure

To address the symmetry of vehicle poses detailed in Section
3.3, a maximum entropy approach is proposed to separate the
front-facing from the back-facing. We calculate the entropy
of information for each of N c keypoint response maps (left
headlight, right headlight, left taillight, right taillight) and se-
lect the highest one as the response map of hidden keypoint:

k = arg max
{Ki}i∈Nc

−
m2∑
j=1

pKij log pKij , (3)

where k is the response map of hidden keypoint, and pj is
the value at each neuron contained in m2-way softmax output
Ki. Based on the maximum entropy principle, we enforce
geometric constraint on the mask matches, and obtain a more
fine-grained set of mask templates {t∗k}.

Finally, we compare the coarse viewpoint proposal (pro-
vided by our Multi-task R-CNN directly) with the poses from
refined mask templates {t∗k}. If the confidence value of view-
point proposal is less than 0.5, we choose a best pose from the
above fine-grained mask templates {t∗k}, which has the mini-
mum distance to the cropped mask T̄c defined in Section 3.3.
Otherwise, the viewpoint provided by Multi-task R-CNN is
preferred.

4. EXPERIMENTS

Our experiments are divided into two parts. First, we eval-
uate our pose estimation approach on the challenging PAS-
CAL3D+ dataset [5] (Section 4.1). Second, for the vehicle
symmetry problem, we visualize each response map of theN c

keypoints, and analyze these maps (Section 4.2), which re-
flects the importance of maximum entropy in our multi-stage
mask optimization scheme.

4.1. Viewpoint Estimation

We evaluate our viewpoint estimation approach without
ground truth detections at runtime in different settings, start-
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Fig. 4. Response Map Visualization. Each response map is an m2-way output in our Multi-task R-CNN.

Accπ
6

MedErr

Su et al. [9]* 0.88 6.0
Tulsiani et al. [10] 0.89 9.1
Mousavian et al. [18] 0.90 5.8
Grabner et al. [2] 0.94 5.2
Pavlakos et al. [1]** - 5.5
Ours - Multi-task R-CNN 0.88 7.2
Ours - Mask Optimization 0.91 5.3

Table 1. Viewpoint Estimation of Car. In the top part of the
table, the approaches [2][9][10][18] use the ground truth de-
tections on PASCAL3D+ dataset [5], while approaches in the
bottom part estimate viewpoint without ground truth 2D de-
tections. * The approach extends the training data by adding
synthetic data. ** The ground truth 3D model must be known
at the runtime.

ing from baseline Multi-task R-CNN version to Mask Op-
timization based version, following the evaluation protocol
proposed in [10] to measure the rotation error

∆(Rgt, Rpred) =
||log(RTgtRpred)||F√

2
(4)

between the ground-truthRgt and the estimated viewpoint ro-
tation matrix Rpred. We report two metrics for evaluation:
Accπ

6
(the percentage of all viewpoint differences within π

6 )
and MedErr (the median of all viewpoint differences that
is robust to object symmetry). The AV P metric [5] is not
applicable because 2D detections are not meaningful for our
specific task. Quantitative results are presented in Table 1.

Without ground truth detections at runtime, our Multi-task
R-CNN based approach outperforms [10] in MedErr since
the geometric constraint between viewpoints and keypoints
are enforced in the training stage. Then, in order to address
the symmetry of vehicle poses, our mask optimization scheme
integrates the entropy of information for each of keypoint re-
sponse maps. After a coarse-to-fine procedure, our approach
outperforms the state-of-the-art [1] in MedErr without the
known 3D model.

4.2. Response Map Visualization and Analysis

The correct confirmation of hidden keypoint provides a so-
lution to the symmetry of vehicle poses. We visualize the
response map for each of N c keypoints to reflect this nature.
In order to get a better look at m2-way response map Ki de-
fined in Section 3.2, we multiply a factor α to the value at
each neuron contained in Ki, where α equals 255/max(Ki).

Formally, the entropy of information reflects the disorder
and randomness of neurons in the response map. In other
words, the image brightness uniformity is a simple, elegant
way to visualize the entropy of information, as shown in Fig-
ure 4. The second and third column in Figure 4 shows that
our Multi-task R-CNN has its intrinsic difficulty for localiz-
ing those vehicle parts that have considerably same character-
istics. As a comparison, we can observe that the hidden key-
point (left taillight) corresponds to a response map, in which
the brightness is much more uniform than visible keypoints
(left headlight, right headlight and right taillight). This con-
firms geometric constraint in our mask optimization scheme
for robustness, and improves the performance on both Accπ

6

and MedErr.

5. CONCLUSION

In this paper, we propose a novel approach for vehicle pose
estimation from RGB images. Capitalizing on the 2D bi-
nary mask templates rendered from ShapeNet and the esti-
mated mask provided by our Multi-task R-CNN, we propose
a multi-stage mask optimization scheme to recover vehicle
poses. To address the symmetry of vehicle poses, our ap-
proach integrates the entropy of information of each keypoint
response map, and enforces geometric constraint on the ve-
hicle poses. Experimentally, we demonstrate state-of-the-art
results on Pascal3D+ dataset for pose estimation. Finally, we
hope that our results motivate future research on pose estima-
tion.
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