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ABSTRACT

Finding a region of an image which matches to a query from
a large number of candidates is a fundamental problem in im-
age processing. The exhaustive nature of the sliding window
approach has encouraged works that can reduce the run time
by skipping unnecessary windows or pixels that do not play
a substantial role in search results. However, such a pruning-
based approach still needs to evaluate the non-ignorable num-
ber of candidates, which leads to a limited efficiency improve-
ment. We propose an approach to learn efficient search paths
from data. Our model is based on a CNN-LSTM architec-
ture which is designed to sequentially determine a prospec-
tive location to be searched next based on the history of the
locations attended. We propose a reinforcement learning al-
gorithm to train the model in an end-to-end manner, which al-
lows to jointly learn the search paths and deep image features
for matching. These properties together significantly reduce
the number of windows to be evaluated and makes it robust to
background clutters. Our model gives remarkable matching
accuracy with the reduced number of windows and run time
on MNIST and FlickrLogos-32 datasets.

Index Terms— image matching, reinforcement learning,
recurrent neural network, convolutional neural network

1. INTRODUCTION

Image matching is a central research topic in image process-
ing. Especially, finding a part of a reference image which
matches to a query image is essential in a wide variety of ap-
plications such as registration [1], verification [2], tracking
[3], compression [4], and stitching [5]. A desirable algorithm
solving this problem should be robust enough to find the cor-
rect matches under the variations happening in the real world
scenarios such as background clutter, occlusions, and geomet-
ric transformations. It should also be sufficiently fast to local-
ize the query image from a huge number of candidate regions
in a reference image within a reasonable time budget.

Exhaustive search with sliding windows gives satisfactory
matching accuracy. However, it is often prohibitive, due to the
huge number of windows needed to be evaluated. Most exist-
ing methods overcome this problem by introducing the idea
of pruning which aims to reduce the run time by skipping
unnecessary windows or pixels that will not change the final
result as much as possible. For example, [6, 7, 8, 9] speedup

the run time by taking into account only subset of pixels from
a given query and candidate pair. [10] reduces the compu-
tation cost by skipping mismatch position based on principal
orientation difference features. [11] proposes to accelerate
the search process by combining random sampling of pos-
sible transformations, distance approximations, and branch-
and-bound search. However, these existing methods still need
to evaluate a large number of windows or pixels for identify-
ing the target region that matches to the query, which makes
the overall search process inefficient.

In this paper, we propose an image matching method that
can significantly reduce the number of windows to be eval-
uated without loosing the matching accuracy. Our idea is to
learn efficient search path from data, i.e., use machine learn-
ing to pick and evaluate only the highly prospective regions
of the reference image. Overall, our method uses a recur-
rent neural network model to sequentially search promising
regions over the reference image that are expected to match
to the query. The network is trained through reinforcement
learning, and thanks to its nature our model can be trained in
an exploratory manner; explicit supervised information such
as the location of the target regions and class labels is not
necessary. Furthermore, our model jointly learns image fea-
tures in an end-to-end manner, which are useful for measuring
similarities. It achieves accurate matching by validating only
an extremely small number of windows. We evaluated our
model on MNIST and FlickrLogos-32 datasets and show that
it gives remarkable matching accuracy with reduced number
of windows and run time.

2. METHOD

Suppose we are given a pair of a query and a reference images
denoted by Q and R, respectively. Our task is to localize the
“target region” represented byQ which exists at a certain po-
sition lg on R. We denote by R(l) the region of R at the po-
sition l. We approach to this task by sequential search. More
specifically, our goal is to determine the sequence of search
window locations {lt}Tt=0 so that it can correctly localize the
position of the target region lg with small T , where T 1 is the
length of the sequence.

We propose a machine learning approach using a recur-
rent neural network. The schematic overview of our model is

1For simplicity, we assume that the window size is fixed throughout the
paper. Extension to the case of arbitrary sized window is straightforward.
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Fig. 1. Overview of our proposed model. Our model has two
major modules: feature extraction module and localization
module.

illustrated as in Fig. 1. Our model consists of two major mod-
ules which we call feature extraction module and localization
module, respectively. The basic behavior of our model at each
time step t can be summarized as follows. The feature extrac-
tion module first extracts the image features of Q and R(lt),
denoted by f(Q) and f(R(lt)), respectively. The similarity
between Q and R(lt) is measured by using these features for
matching. Then the two image features f(Q) and f(R(lt))
as well as the current window location lt are fed to the local-
ization module that estimates the next position of the window,
lt+1. These two sub-processes are repeated sequentially until
the maximum number of iterations T is reached. We detail
the two modules in Sec. 2.1.

Training of our model is tricky, because the localization
is performed in a sequential manner. The current decision
at a time is made depending on all the past decisions, so the
quality of the decision at each time step cannot be evaluated
independently from the others. Therefore, typical supervised
or unsupervised learning methods which assume the samples
to be i.i.d. cannot be applied to our case. Fortunately, this
process can be modeled as a partially observable Markov de-
cision process (POMDP), so the training can be performed in
a reinforcement learning manner. In this paper, we propose a
method that can jointly learn image features as well as search
paths, i.e., sequence of the window locations to be searched,
in a unified framework. Our algorithm is inspired by the re-
current attention models [12, 13, 14] which are proposed for
image recognition. Unlike these, our model is customized
to image matching task and designed to learn image features
effectively for similarity matching. Furthermore, the entire
model can be trained with less supervision, i.e., unlike these
models, ours does not require any class labels for training. We
give the detail of our algorithm in Sec. 2.2

2.1. Details of Modules

As shown in Fig. 1, our model is basically a CNN-LSTM
model and uses the CNN for feature extraction and LSTM
for localization. We hereafter give the details of these two
major modules one-by-one.

Feature Extraction Module. This module extracts the image
features from Q or R(lt). It consists of two identical CNNs
with the same parameters; one for Q and the other for R(lt).
The CNN is designed to have a sequence of five Conv-ReLU

layers (ReLU activation after 2D convolutions) followed by
a global average pooling. This is fully-convolutional so does
not have any fully-connected layers. The advantage of this
configuration is that it can extract a feature vector of the same
length from an arbitrary size of input image.
Localization Module. The localization module is the most
salient feature of our model. The main component of the
module is LSTM that sequentially predicts the next location
lt+1 based on three external inputs including the two image
features f(Q) and f(R(lt)) and the current window location
lt. In our implementation, the three inputs are concatenated
to form a single vector and then fed to the LSTM. However,
since the location lt is lower-dimensional (2D) compared to
the image features (128 or more), the resulting vector is dom-
inated by the elements of the image features, which makes
it difficult to capture useful positional information. To avoid
this, by a linear projection, lt is first encoded to a position
vector which has the same dimensions as the image feature
and then concatenated with them. The resulting hidden state
ht of the LSTM is translated to the expected location of the
next window l̂t+1 by another linear projection. We assume
that the actual position of the next window lt+1 is a stochas-
tic variable that follows a Gaussian distribution, where l̂t+1

gives the mean vector. Specifically, lt+1 is obtained as a sam-
ple from the distribution N (l̂t+1, λI) as lt+1 ∼ N (l̂t+1, λI),
where I is the identity matrix and λ is a hyperparmeter.

The initial position of the window l0 is determined in a
similar way used in [13, 14]. Specifically, we first extract the
image features of the (down-sampled) global reference image,
f(R), by using the feature extraction module and then feed it
to another linear projection which is analogous to the context
network used in [13, 14] to generate l0. Both of the f(R) and
l0 are fed to the LSTM to predict the next position l1.

2.2. Model Training

Let Θ = {θf , θl} be the parameters of the whole model,
where θf and θl are the parameters of the feature extraction
module and the localization module, respectively. We use re-
inforcement learning to tune Θ. Since the location lt is deter-
mined sequentially in our method, lt is determined with the
condition on all the past locations visited. For notational sim-
plicity, we use st−1 = {{lτ}t−1

τ=1,Q,R}. The policy of our
model then can be represented as a conditional distribution
π(lt|st−1; Θ). Now our goal is to maximize the total reward
R =

∑T
t=1 rt w.r.t. Θ. A natural choice for the reward func-

tion rt in our case would be the success or failure of the search
at time t: rt = 1 if and only if the window at time t correctly
captures lg , and rt = 0 otherwise. The expected value of the
total reward is given as

J(Θ) = Ep(sT ;Θ)[R], (1)

where p(sT ; Θ) is the probabilistic distribution of sT which
depends on the policy. Although the gradient w.r.t. Θ is non-
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trivial, it can be approximately computed by sampling the se-
quences of {lt, st−1}Tt=1 from the policy in a similar way to
Monte-Carlo approximation, which gives

∇ΘJ(Θ) ≈ 1

M

M∑
i=1

T∑
t=1

∇Θ log π(lit|sit−1; Θ)Ri. (2)

where M is the number of sample sequences. By using this,
Θ can be iteratively updated through gradient ascent.

Training our model only with reinforcement learning of-
ten makes the prediction results unstable. Hence, we involve
another loss function to improve the stability of the learn-
ing process. Specifically, we require the image features ex-
tracted by the feature extraction module to correctly measure
the similarity between f(Q) and f(R(lt)), i.e., the distance
between the two features should be small for matching pairs
and large for non-matching pairs. To this end, we impose a
contrastive loss function on the feature extraction module as
done in widely-used Siamese networks.

L(θf ) =

T∑
t=1

rtd
2 + (1− rt) max{0,m− d}2, (3)

where d = ||f(Q) − f(R(lt))|| and m is a margin. This is
piecewise differentiable w.r.t. θf and so can be easily opti-
mized with gradient descent.

3. EXPERIMENTS

3.1. Datasets

We use two benchmark datasets, MNIST2 and FlickrLogos-
323 [15], in our experiments for evaluation.

MNIST. We considered three experimental protocols on the
basis of the MNIST dataset. The first protocol is referred to as
Translated MNIST, in which each reference image was gen-
erated by placing the query, i.e., a 28× 28 digit, in a random
location of a 100 × 100 blank patch. The second protocol
is called Cluttered MNIST and is used to evaluate the ro-
bustness of the methods as regards background clutter. Here,
each reference image was generated by adding random 9× 9
subpatches from other random digits to random locations of a
Translated MNIST reference image. Finally, we placed a ran-
domly chosen 28×28 digit, which is different from the targett
digit, at a random location of each cluttered MNIST reference
image, leading to our third protocol, Mixed MNIST.

All query-reference pairs were prepared for all the three
MNIST variants by considering each 100 × 100 digit as ref-
erence and then selecting a 28 × 28 query of the same digit
from a master set of 10 centered clean numbers from 0 to 9.
Following the standard split of MNIST, we used 10, 000 query

2http://yann.lecun.com/exdb/mnist/
3http://www.multimedia-computing.de/flickrlogos/

and reference pairs for testing and the remaining 60, 000 pairs
for training.

FlickrLogos-32. This dataset consists of 2, 240 images of 32
different logos with 70 images per logo. In our experiments,
the training and the test sets are composed of 2, 000 and 240
query-reference pairs, respectively. Each pair was generated
by considering a logo image in the dataset as the reference and
a tightly cropped logo of the same brand as the query. In total,
we have 32 query images, each corresponding an individual
logo. All the reference images were resized to half of their
original size; each query was then resized to the same size of
the logo in the reference image.

3.2. Experimental Setup

Performance Metrics. We evaluated our approach in terms
of accuracy and speed. Given a query and a reference im-
age, our model outputs a predicted window corresponding to
a region in the reference image, which is used to evaluate the
accuracy. In particular, an image matching is considered as
being successful if the intersection over union (IoU) between
the predicted window and the ground-truth window is greater
than 0.5, following the same standard as in the object detec-
tion literature. We report the success rate which represents
the ratio of the number of image pairs with correct matches
to all the pairs. The efficiency is evaluated in terms of two
measures. One is the number of windows evaluated, and the
other is run time required for processing each query-reference
pair.

Baselines. We compared our method with two existing image
matching methods, namely BBS [7] and MTM [16]. We use
the codes provided by the author groups. We make sure that
the same hardware environment is used for each method and
that hyper-parameters of these methods are carefully tuned.

Learning Configurations. We trained the proposed model
from scratch using Adam with a batch size of 64 for MNIST
and 1 for FlickrLogos-32. The learning rate was kept in the
range [10−4, 10−3] with an exponential decay. The variance
hyperparameter of the Gaussian λ, which is used for sampling
out the next location, is fixed to 0.22.

3.3. Results

For all the datasets, the success rate, the number of windows
evaluated, and the run time are reported in Tables 1, 2 and 3,
respectively.

Results on Translated MNIST. First, as can be seen in the
Table 1, the success rate of our method is best among all the
baselines. The maximum gain of our method over the base-
lines reaches 0.25 on BBS and 0.27 on MTM. The results
clearly demonstrate that our model is able to learn search path
very accurately on Translated MNIST dataset. Second, as
shown in Table 2, our model clearly outperforms the baseline

1969



Table 1. Image matching success rate.

Dataset
Translated

MNIST
Cluttered
MNIST

Mixed
MNIST

Flickr
Logos-32

Ours 0.95 0.91 0.88 0.39
MTM [16] 0.68 0.20 0.15 0.28
BBS [7] 0.70 0.11 0.08 0.36

Table 2. Number of windows evaluated to localize a query.

Dataset
Translated

MNIST
Cluttered
MNIST

Mixed
MNIST

Flickr
Logos-32

Ours 6 8 8 6
MTM [16] 5329 5329 5329 18298
BBS [7] 10000 10000 10000 40112

methods in terms of the total number of candidate windows
evaluated to localize the query. Our method just evaluate 6
candidate windows, whereas the baseline methods evaluates
in thousands. The advantage of processing only a few win-
dow reflects in the run time. Although the run time is not di-
rectly proportional to the number of windows processed since
each methods have different computation requirement for ev-
ery pixel, ours is competitive to or much faster than the other
two methods, while yielding much better matching accuracy.

Results on Cluttered and Mixed MNIST. In terms of suc-
cess rate in matching, our method is the best among all the
baselines, as shown in Table 1. This suggests that our model
can successfully learn search path even in the presence of a
wide range of background clutters. BBS performs the worst
among the three methods. This is because the matching be-
tween query and candidate windows in BBS is evaluated ac-
cording to the consistency of the distributions of pixels; two
windows were determined as a matching pair if their pixel dis-
tributions in (x, y,R,G,B) space are similar. This strategy is
not effective on Cluttered and Mixed MNIST where the noise
may have the same underlying distribution as the target. Our
method can accurately localize the query object in just 8 can-
didate windows for both Cluttered and Mixed MNIST. Also,
our method is competitive or superior in run time.

Results on FlickrLogos-32. This dataset is the most chal-
lenging because the targets are different from the queries due
to a wide variety of scale changes, viewpoint changes, and
deformations. Table 1 shows that our method outperforms all
the baselines in accuracy. In terms of run time, the gain of our
method is significant compared to the cases of MNIST dat-
sets. This is because the sizes of the reference images are
larger than those of MNIST and the run time of BBS and
MTM is almost linear in the reference image size. The run
time of our method only depends on the number of windows
to be evaluated, which is far smaller than the two baselines.
This suggests that our approach is more efficient when it is
applied to more realistic and larger size images.

Qualitative Results. Figure 2 shows some qualitative results.
It demonstrates the excellent ability of our model in learning

Table 3. Average run time in milliseconds.

Dataset
Translated

MNIST
Cluttered
MNIST

Mixed
MNIST

Flickr
Logos-32

Ours 1 3 4 6
MTM [16] 2 3 5 230
BBS [7] 132 141 148 2390
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Region
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Query

Search 
Path
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Fig. 2. Qualitative results. For a given query-reference pair,
the example shows the search path traced by our model in
order to localize the query. The search path is overlaid in
green lines. The red dot indicates the predicted location at the
last time step. The window cropped from the last attended
location is the search output of our model.

the search path. The results on MNIST datasets show that de-
spite the increased level of search difficulty due to clutter, our
model still can successfully localize the query object with al-
most the same number of candidate windows evaluated. Sim-
ilarly, from the FlickrLogos-32 examples, it can be seen that
our method can successfully find the target logos even if they
are heavily different in their colors and poses. For instance, in
the case of the left most example (Apple logo), our model suc-
cessfully localizes the target despite the different appearance
between query and reference images. This can be possible be-
cause our model jointly learns search paths and effective deep
features for matching.

4. CONCLUSIONS

In this paper, we attempted to address the fundamental prob-
lem of matching a query to a region in a reference image by
introducing a novel end-to-end learning based method. The
proposed method was based on CNN-LSTM that sequentially
outputs the next location towards the target region in each it-
eration. The model has several appealing properties, due to
its ability of joint feature and search path learning. First, the
number of candidate windows processed to localize the query
is far smaller than existing methods, which leads to faster im-
age matching especially for large images. Second, as can be
seen in the experimental results, our model is able to localize
the query even in severely cluttered reference images.
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