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ABSTRACT
This paper analyzes the diversity deficiency of positive train-
ing samples used to fine-tune CNN-based tracking networks,
especially when confronted with large pose changes and out-
of-plane rotation challenges. Therefore, we present a novel
adversarial learning-based hard positives generation method
and embed it into the multi-domain network (MDNet)-based
tracking framework. Instead of adopting the dense sampling
strategy to generate monotonous positive samples, we cast it
as a cross-domain image transformation problem, which is
designed to be able to generate hard positive samples with
more diversity and some degree of motion blur and pose di-
rection changes. Experimental results on tracking benchmark
demonstrate the effectiveness and robustness of our proposed
method compared with the state-of-art trackers.

Index Terms— Human tracking, Out-of-plane rotation,
GAN-based data augmentation, Hard positives, Multi-domain
network

1. INTRODUCTION

Visual single object tracking is one of the fundamental prob-
lems in computer vision, the aim of the tracking task is to
locate a specific target robustly and accurately in a video
sequence[1]. Despite the impressive results current algo-
rithms have achieved, non-rigid object (especially for human)
tracking still confronts with several challenging situations,
such as large pose variations, out-of-plane rotation, motion
blur, etc.

With the rapid development of deep Convolutional Neural
Network (CNN)[2], deep CNN has shown its powerful abil-
ity for tackling a variety of computer vision problems. Es-
pecially CNN-based trackers have already shown state-of-art
performance, e.g., fully-convolutional Siamese-based[3] and
multi-domain network-based[4], etc. A large number of pos-
itive training samples for tracking a specific object may not
be available from the first frame. Therefore, the general rou-
tine of most CNN-based trackers is to pre-train their networks
on a large range of datasets, and fine-tune the networks with
the samples collected in the first frame from a Gaussian dis-
tribution. This popular dense sampling strategy causes the
positive training data lack of diversity, while the negatives

are relatively sufficient and various. This kind of class im-
balance problem is usually solved by specifically designed
loss function[5] or hard negative mining mechanism[4]. Re-
cently adversarial learning-based data augmentation has been
widely adopted in the tracking framework to enrich the train-
ing dataset, e.g., hard positives augmentation for handling oc-
clusion problem[6] and hard negatives augmentation for long-
term tracking[7]. Therefore, inspired by the above methods,
in order to make our tracker more robust to pose variations
and out-of-plane rotation, we propose a pose-guided hard pos-
itive samples augmentation method via generative adversarial
network (GAN), and integrate it with the effective MDNet
tracking framework. The main contributions of our work can
be summarized as follows:

• We introduce a novel hard positive samples augmenta-
tion method for tracking articulated human being. We
train the GAN model to generate diverse hard posi-
tive samples with different pose directions, these pose-
guided positives increase the richness of samples while
obeying the original target distribution.

• We combine our positive data augmentation mecha-
nism with the MDNet tracking framework, where the
generated positives are applied in the online fine-tune
process and online updating when tracking failure has
been detected.

• The extensive experiments demonstrate the effective-
ness and improvement of our method compared to the
original MDNet and other state-of-art methods in the
public benchmark. Especially when our tracker faces
the large pose variations and out-of-plane rotation chal-
lenges, the drifting problem can be alleviated effec-
tively.

2. PROPOSED METHOD
2.1. The hard positives generation network

The aim of the pretraining process of most CNN-based track-
ers is to learn to represent the general and significant deep
features, while the online fine-tune process is trying to adjust
to identify the target in specific tracking sequence. During the
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Fig. 1. Structure of hard positives generation networks. The gen-
erator network and discriminator network are denoted by G and D,
respectively.

fine-tuning process, the amount of positive training samples in
the first frame is extremely limited and less diverse compared
with the collected negative samples. The tracker fine-tuned
with these imbalanced samples is easily subject to the drift-
ing problem, especially when the target undergoes large pose
variations and out-of-plane rotation.

To deal with the above problem, we propose to employ
generative model network to perform the positives data aug-
mentation. Based on the observed fact of possible variations
of a human target, we define a set of the typical poses cor-
responding to eight directions while a person is walking.
We try to train our generative model to transform the given
groudtruth image into these eight target domains, that is, the
exact same target of different pose directions. The advantages
of using these generated images to fine-tune the tracker can be
summarized as two aspects. Firstly, compared to the original
densely sampled positives which are monotonous and redun-
dant, the generated hard positives samples are more diverse.
Secondly, since the generated positives cover the possible
variations of the target, the classifier would be able to gen-
eralize to recognize the target even with some unseen poses.
A lot of impressive generative models have been proposed in
recent years, such as variation auto-encoder(VAE)[8], Pixel-
RNN[9] and generative adversarial network(GAN)[10]. In
order to maintain the fidelity of generated samples theo-
retically, which means the distribution of generated images
should be the same as the training images’ distribution, we
choose GAN as our generative model. Note that there are
eight target domains in our conception, and basically tradi-
tional GAN-based image-to-image translation models have
limited ability in handling multiple domains, because these
methods are only capable of translating images between
each pair of domains. Therefore we choose StarGAN[11]

Fig. 2. The illustration of generated images of our StarGAN model.
The first column is the original source image. From the second to
the ninth column, corresponding to the generated images with eight
different pose directions.

to perform our work because it can successfully learn multi-
domain image-to-image translation using only one model.
The effectiveness of this model lies in two points: Firstly,
the generator(G) takes the depth-wise concatenation of image
and the domain label as input. Secondly, the introduction
of another reconstruction generator is to form a closed loop
in conjunction with the generator network. The objective
functions of optimizing generator(G) and discriminator(D)
are shown as follows:

LD = −Ladv + λclsL
r
cls (1)

LG = Ladv + λclsL
f
cls + λrecLrec (2)

where Ladv means the adversarial loss from the original
GAN, Lrec denotes the reconstruction loss and Lr

cls and Lf
cls

denote the domain classification loss corresponding to real
and fake sample, respectively. For specific information please
refer to the original paper[11].

The architecture of our hard positives generation network
is shown in Fig. 1. In our method, we define eight walking
pose directions, which correspond to eight labels from 0 to
7. In each training epoch, the generator takes the human im-
age and the target poses label as input and generates a fake
image of target pose direction. Then the fake image and the
original pose label are given to the reconstruction generator,
which is trying to reconstruct the image of the original pose
direction. The whole generative networks are optimized in a
closed loop according to Eqn.(1) and Eqn.(2). For the training
process, we choose a human gait dataset which just includes
8 walking pose directions data. When the generative model is
done, we input the original human image with its correspond-
ing pose label and the target domain label, and the target im-
age is generated from the reconstruction network. The details
will be given in the below subsection. Fig. 2 illustrates some
generated images from our StarGAN model in the training
stage.

3. INTEGRATED TRACKING METHOD

In order to prove the validity of our proposed hard positives
augmentation strategy, we embed it into the effective MDNet
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framework. MDNet is an elegant micro neural network de-
signed especially for tracking tasks[4]. It consists of shared
layers and branches of domain-specific layers. The shared
layers function as generic feature extractor while the domain-
specific layers are especially initialized for each sequence
to capture the domain-specific information. Similar to most
CNN-based trackers, the positive samples used to fine-tune
the network are collected around the target obeying Gaussian
distribution, which are repeating and redundant.

Therefore, we propose to integrate StarGAN-based data
augmentation into MDNet tracking framework. 1) For off-
line training, the StarGAN-based hard positives generator
networks are pretrained based on human gait dataset. The
multi-domain image-to-image translation can be realized.
The MDNet tracker is pretrained as it usually does. 2) For
online tracking, in the first frame we collect 100 base pos-
itive samples around the groundtruth with different scale
sizes(from 1 to 1.4), overlap ratios(from 0.8 to 1), and aspect
ratios(from 0.8 to 1.2). Each one of the samples is applied
to the generation networks to obtain eight hard positives of
different poses. As mentioned above, we need the initial pose
label of each base sample. To accomplish this, we design
a simple pose label estimation method wherein we compare
each base sample with the centers of eight poses from training
data and assign the label the same as its nearest neighbor’s.
The similarity is defined based on the L2 distance between
two feature vectors. We extract the activation values of the
third convolutional layer of MDNet and flatten it into a fea-
ture vector, denoted by f . Hence, the initial pose label of
each base sample x can be estimated based on:

Label(x) = argmin
i

‖f(xi)− f(x)‖2 (3)

where f(xi)|7i=0 are the feature vectors corresponding to
each pose center from StarGAN training dataset respectively.
Therefore, during the initial fine-tune for each tracking se-
quence, we can generate a total of 800 hard positive samples
with different pose directions, which enriches the dataset with
more diversity to some extent. Fig. 3 shows the comparison
between our generated hard positives and densely sampled
positives. We can find that the generated samples are much
more diverse and provide more information about the tar-
get. The tracker would be able to generalize to recognize
the target even with some unseen poses, which is effective
for alleviating the drifting problem caused by out-of-plane
rotation. 3) For online updating, we add a failure updating
mechanism. As the traditional MDNet does, once the poten-
tial failure has been detected, the failure update is conducted
by generating 160 positive samples from top 20 convincing
tracking boxes. Thus, the positive samples used for updating
not only include the original positives sampled around the
target but also, more importantly, include the ones generated
by StarGAN generator. The proposed integrated tracking
framework is shown in Fig. 4.

Fig. 3. Illustration of generated positive samples based on GAN
model (a) vs. densely sampled positive samples (b).

Fig. 4. Framework of the whole tracking process.

4. EXPERIMENT

In this section, we evaluate our method on public OTB bench-
mark with other state-of-art methods and also introduce com-
parison studies to further analyze our proposed method.

4.1. Experimental setups

In the pretrain of the GAN, we use the DatasetA of the CA-
SIA database which has human walking clips with different
pose directions[12]. Dataset A includes 19139 images of 20
persons, each person has 12 image sequences. For offline
MDNet training, we use 58 training sequences collected from
VOT2013[13], VOT2014[14] and VOT2015[15] excluding
the test videos in OTB100[16]. For online test, we select 33
human tracking video sequences from OTB100 dataset.

The parameter configuration of our experiments is listed
as follows. During pretraining the StarGAN network, the two
hyper-parameters λcls and λrec are set to 1 and 10 in all of
our experiments. And the training set image size is adjusted
to 128*128, the learning rate of failure updating is set to 10
times larger than the initial one for fast adaption. The batch
size is set to be 16 for all experiments. training iterations
are set as 300000, other parameters configurations remain the
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Fig. 5. Quantitative comparison results on OTB100 dataset. The
numbers in the square brackets in the legend indicate the representa-
tive success plot at threshold 0.4 for success plots, and the represen-
tative precision at 20 pixels for precision plot.

Fig. 6. Comparison results of different divisions of pose directions.
MDNet+StarGAN-8 and the MDNet+StarGAN-4 denote the divi-
sion of 8 and 4 poses respectively.

same with the original StarGan and MDNet.

4.2. Comparison results

In order to demonstrate the effectiveness of our proposed
method, we perform a comparison experiment with other
state-of-art methods, including SINT[3], ECO[17], C-COT[?]
and the original MDNet[4]. To quantitatively evaluate these
methods, we employ one-pass evaluation (OPE) on two met-
rics: center location error and bounding box overlap ratio
[16]. Fig. 5 illustrates the success plots and precision plots
based on the bounding box overlap ratio and center location
error, respectively. From the figure, we can see our method,
denoted by MDNet+StarGAN performs favorably against
other trackers in both measures, and our improved algorithm
outperforms the original MDNet. Considering data augmen-
tation, our hard positive generation networks can improve the
tracking performance. Fig. 7 presents the superiority of our
method qualitatively in three challenging sequences: Basket-
ball, Human2 and Human4. Especially the target in Human2
sequence undergoes continuously out-of-plane rotation prob-
lem, it can be seen our method illustrated by red rectangle
can locate the human body robustly and accurately.

Earlier we empirically divide the human walking poses
into eight directions, corresponding to eight pose labels. To
evaluate the influence of the number of pose labels. We con-
duct another comparison experiment between 8 pose direc-
tions and 4 pose directions, i.e., 4 pose directions with rota-
tion degree of 0, 90, 180 and 270. We don’t consider a further
fine division of pose directions because more direction labels

Fig. 7. Qualitative results of the proposed method on three chal-
lenging sequences.

would lead the generator networks to collapse and the bound-
aries among different pose directions would become obscure.
The comparison result is shown in Fig. 6, it can be seen the
division of eight directions performs better than the four one.

5. CONCLUSION

In this paper, We have introduced a hard positive samples
augmentation method for MDNet-based human tracking. We
have shown the effectiveness of applying StarGAN model to
generate more diverse and less redundant positive samples,
which are integrated into online fine tune mechanism of MD-
Net to alleviate the positives deficiency. Compared with state-
of-the-art trackers on public tracking benchmark: OTB. The
comparison experimental results have verified our method has
significantly boosted the tracking robustness of MDNet when
confronting with large pose variations and out-of-plane rota-
tion scenarios.
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