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ABSTRACT

Aerial cinematography relying on camera-equipped umanned
aerial vehicles (UAVs), or drones, has revolutionized media
production during the past years. Autonomous UAV function-
alities are already being employed to a degree, in a manner
structured mainly around visual target tracking. From a cine-
matographic point of view, the desired shot type (i.e., Close-
Up, Long Shot, etc.) is the most important factor affecting the
artistic result. Achieving a specific shot type depends on the
target-to-camera distance and the camera focal length. How-
ever, the interaction between UAV/camera motion trajectory
(e.g., Orbit, Chase, etc.) and the visual tracker requirements
constrains the range of feasible shot types at each time in-
stance. In this paper, which extends previous work, these con-
straints are explored for a number of standard UAV/camera
motion types, UAV shot types are classified and rules regard-
ing shot feasibility over time are analytically derived. The
proposed rules are evaluated in a realistic UAV simulation en-
vironment and achieve high performance, indicating possible
benefits from their integration into an intelligent shooting sys-
tem.

Index Terms— UAV cinematography, shot type, au-
tonomous drones, target tracking

1. INTRODUCTION

The combination of Unmanned Aerial Vehicles (UAVs or
“drones”) and professional cameras has recently revolutional-
ized aerial cinematography in media production applications.
UAVs are portable, able to access narrow spaces, implement
novel visual effects and capture intriguing shots, at a low cost
and with easy deployment. In professional production sce-
narios, at least two persons are needed to act in coordination
for manual camera and UAV operation. Autonomous func-
tionalities can facilitate their work and reduce the challenges
of fully manual filming. Such capabilities in current commer-
cial drones (e.g., the DJI Phantom IV Pro, or the more recent
Skydio R1) are structured mainly around visual detection,
tracking and active physical following of a specific target
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being shot, while relying on machine learning and computer
vision modules (e.g., [1] [2] [3]).

The typical procedure in media production applications
involves a director pre-specifying a cinematography plan,
consisting in a temporal sequence of target assignments,
camera motion types, shot types and framing compositions.
Both the camera motion type (equivalent to UAV motion
type, in our case) and the shot type are relative to a target be-
ing filmed, while achieving the requested shot type depends
on the target-to-camera distance and the (adjustable) camera
focal length f . If visual target tracking is involved, the maxi-
mum permissible focal length is necessarily constrained for a
2D visual tracker to operate properly. This is because the lo-
cation (in pixel coordinates) of the target’s Region-of-Interest
(ROI) should differ no more than a threshold between succes-
sive video frames/time instances. This requirement places a
constraint on the maximum target speed and on the maximum
camera focal length, since a given 3D target displacement in
the scene corresponds to a greater 2D ROI displacement (in
pixels) at a greater zoom level. Estimating the maximum al-
lowable f at each given circumstance is of utmost importance
in cinematography applications, since it affects the currently
permissible shot types.

Such a study was recently performed, in [4], assuming
central framing composition (i.e., the selected target is al-
ways visible at the center of the video frame) and known 3D
world positions of the UAV and the target. Industry-standard
target-following UAV/camera motion types were geometri-
cally modelled and, based on this modelling, the maximum
permissible camera focal length for avoiding visual target
tracking failure was analytically determined in the general
case, as well as for a specific example camera motion type.
That work was motivated by conclusions reached in prelimi-
nary relevant papers [5] [6] [7] [8] [9] [10].

This paper is a follow-up work. It extends [6] and [4],
first by explicitly deriving maximum focal length constraints
for all modelled camera motion types. These constraints are
subsequently exploited by proposing simple rules for deter-
mining shot feasibility at each time instance. To achieve this,
useful UAV shot types are classified according to a ROI-to-
video-frame ratio criterion. The described rule set is then em-
pirically evaluated in a realistic UAV simulation environment
and shown to achieve a very high rate of correct predictions.
Incorporating shot type permissibility rules into media pro-
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duction automation software, such as intelligent UAV shoot-
ing algorithms [11] [12] [13], is expected to greatly enhance
the robustness of autonomous cinematographic drones.

As in [4], the main underlying assumption is that the au-
tonomous UAV operates in a consistent, global, Cartesian 3D
map, where both vehicle and target position/velocity vector
estimates are constantly provided. This can be easily achieved
by combining GPS receivers [14] on both the UAV and the tar-
get, on-drone IMUs [15] and visual target localization meth-
ods [16]. Finally, the shooting camera is assumed to be sus-
pended from a gimbal, allowing rapid, arbitrary camera ro-
tation and attached to a fixed position of the UAV frame. In
summary, this is a realistic UAV deployment setting, similar
to the one presented in [17].

2. UAV CINEMATOGRAPHY MODELLING AND
MAXIMAL FOCAL LENGTH CONSTRAINTS

In order to examine UAV shot type feasibility under con-
straints derived from 2D visual tracking requirements, the
UAV/camera motion types should be formalized and geomet-
rically modelled. Thus, it is assumed that, given a frame
rate F , time t proceeds in discrete steps of 1

F seconds. The
position vectors of the target and the UAV are denoted as
p̃t = [p̃t1, p̃t2, p̃t3]

T and x̃t = [x̃t1, x̃t2, x̃t3]
T , while the ve-

locity vectors as ũt and ṽt, respectively, in a known fixed,
orthonormal, right-handed World-Coordinate-System (WCS)
with axes ĩ, j̃, k̃. Axis k̃ is vertical to a local tangent plane
(or “ground plane”). Additionally, at each time instance, a
current, orthonormal, right-handed target-centered coordinate
system (TCS), i, j, k is defined. Its origin lies on the current
target position, its k-axis is vertical to the ground plane and
its i-axis is the L2-normalized projection of the current tar-
get velocity vector onto the ground plane. In both coordinate
systems, the ij-plane is parallel to the ground plane and the k-
component is called “altitude”. Vectors expressed in TCS are
denoted without the tilde symbol (e.g. p, x). The 3D scene
point at which the camera looks at time instance t is denoted
by lt, while ot = lt − xt is the LookAt vector (both in TCS).
Below, it is assumed that lt = pt at all times (central framing
composition).

By implementing a geometrically modelled UAV/camera
motion type and knowing the exact 3D target position (ig-
noring practical limitations, such as maximum vehicle speed,
wlog), an autonomous UAV would be able to actively track,
follow and film the desired target as desired. This requires
a prediction of 3D target displacement between successive
moments, so that cinematography constraints can be met in
time through prompt gimbal, camera and UAV control. How-
ever, sensor noise in 3D target position measurements and
the unpredictability of the actual current target velocity (it
may deviate from the predicted one by the unknown vec-
tor q̃t = [q̃t1, q̃t2, q̃t3]

T ) perplex the issue. Thus, the tar-
get ROI at time t′ = t + 1 has to be explicitly localized
via 2D visual tracking (in pixel coordinates), so that it can

be exploited for 3D target position p̃t′ estimation and/or for
adjusting the framing composition. Based on the above and
working in TCS, the following general constraint for maximal
focal length was derived in [4]:

fmax =
Rmaxdt′sxsy|E1 + F ‖ xt′ ‖2 |√

(sxqt3d2t′ − sxxt′3E2)2 + s2yE
2
3 ‖ xt′ ‖2

, (1)

where E1 = −qt1xt′1 − qt2xt′2 − qt3xt′3, E2 = qt1xt′1 +
qt2xt′2, E3 = qt2xt′1 − qt1xt′2 and dt′ =

√
x2t′1 + x2t′2.

Here, sx and sy denote the physical dimensions of a pixel.
Whenever q̃t is a non-zero vector and, therefore, prediction of
p̃t+1 fails, the results of 2D visual tracking and actual p̃t+1

estimation must be employed for updating the target velocity
vector and, hopefully, achieving a better prediction during the
next time instance. Given that tracker behavior varies per al-
gorithm, we simply assume a maximum search radius Rmax

(in pixels) defining the video frame region within which the
tracked object ROI of time instance t + 1 must lie, relatively
to the video frame center, in order to permit successful track-
ing. This radius, however, is not fixed, since modern trackers
adapt the size of their search region to the current ROI size.

Additionally, by utilizing the above notation, six industry-
standard target-tracking UAV/camera motion types were for-
malized and geometrically modelled in [6] and [4]: “Lateral
Tracking Shot” (LTS), “Vertical Tracking Shot” (VTS), “Fly-
Over”, “Fly-By”, “Chase” and “Orbit”. Based on this mod-
elling, Eq. (1) was adapted for the specific example cases of
ORBIT and LTS in [6] and [4], respectively.

3. MAXIMUM FOCAL LENGTH IN SPECIFIC
CAMERA MOTION TYPES

Here, we present the maximum focal length constraint
adapted for VTS, FLYOVER, FLYBY and CHASE, for the
first time. Their derivation follows from Eq. (1) and the
descriptions of the various modelled camera motion types in
[4]. These constraints will be employed in the next Section
for the proposed shot type feasibility rule set.

Thus, in VTS, it holds that:

fmax =
RmaxFxt′3sxsy√
s2yq

2
t1 + s2xq

2
t2

. (2)

Additionally, it holds that:

fmax =
Rmaxdfbsxsy| − Efb1 + F ‖ xt+1 ‖2 |√

s2xE
2
fb1x

2
t3 + s2yE

2
fb2 ‖ xt+1 ‖2

, (3)

fmax =
Rmaxdfo1sxsy| − Efo1 + F ‖ xt+1 ‖2 |√

s2xE
2
fo1x

2
t3 + s2yE

2
fo2 ‖ xt+1 ‖2

, (4)

for FLYBY and FLYOVER, respectively, where dfb =√
(−x01

K t+ x01)2 + x202, Efb1 = qt1(
−x01

K t+x01)+ qt2xt2,
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Efb2 = qt2(
−x01

K t + x01) − qt1xt2, dfo = |(−x01

K t + x01)|,
Efo1 = qt1(

−x01

K t+ x01) and Efo2 = (qt2(
−x01

K t+ x01)).
For CHASE, it holds that:

fmax =
Rmaxsxsyφc| − Fφ2c + xt1qt1|

xt1

√
s2yφ

2
cq

2
t2 + s2xx

2
t3q

2
t1

, (5)

where φc =
√
x2t1 + x2t3.

4. SHOT TYPE FEASIBILITY

The desired shot type is mainly determined by the ratio of the
ROI height to the video frame height (in pixels) cs, a quantity
that we refer to as “target video frame coverage”. Below, we
present a proposed list of common UAV shot types, adopted
from traditional ground and aerial cinematography [18] [19]
[20]. This classification scheme was reached after extensive
visual inspection of professional UAV footage: Extreme Long
Shot (ELS) is defined by cs < 5%, Very Long Shot (VLS) by
cs ∈ [5, 20%], Long Shot (LS) by cs ∈ [20, 40%], Medium
Shot (MS) by cs ∈ [40, 60%], Medium Close-Up (MCU) by
cs ∈ [60, 75%], and Close-Up (CU) by cs > 75%.

Shot types and UAV/camera motion types are combined
in the cinematography plan to produce the desired footage. In
order to determine, at each time instance during shot execu-
tion, whether the pre-specified shot and camera motion type
combination is currently feasible, the appropriate focal length
fs leading to the desired target video frame coverage must be
calculated. fs remains unchanged for camera motion types
that retain a constant distance between the target and the cam-
era (i.e., CHASE, VTS, LTS and ORBIT), otherwise it varies.
In the latter case, keeping the coverage constant throughout
the camera motion, by properly modifying fs, will result in
the cinematographic “dolly zoom” effect [18]. In general, a
shot type can be achieved without risking 2D visual tracking
failure, if the following relation holds:

fs ≤ fmax (6)

In order to calculate the appropriate fs for achieving the
shot types described in Section 2 with respect to the desired
UAV/camera motion type, we model the target as a sphere,
with its center located at the TCS point [0, 0, 0]T and hav-
ing constant radius Rt. Simple sphere-modelling allows us
to consider its image on the video frame as a circle, with no
perspective distortion when lt = [0, 0, 0]T .

Below, the deviation vector qt is assumed to be equal to
[0, 0, 0]T for the desired fs calculations. Thus, no target mo-
tion deviations are taken into consideration, since they do not
significantly affect the resulting video frame coverage.

Determining the video frame coverage for every UAV
motion type would normally include projecting the target
sphere onto the video frame, finding the corresponding radius
of the projected circle and computing the resulting coverage.

This requires a search for the radius of the projected circle.
The parameters determining the video frame coverage are the
distance between UAV/camera and target, the camera focal
length f and the physical target dimensions. Thus, wlog,
instead of directly projecting the target onto the current im-
age plane, we determine the video frame coverage as if the
UAV/camera was positioned exactly above the target in an
altitude equal to the actual distance between them. It is then
trivial to find a 3D point being projected on the target image
circle. The latter’s radius is the distance between the pro-
jection of the above 3D point and the principal point. This
projection can be obtained by utilizing the camera projection
equations [21]:

xd(t+ 1) = ox −
f

sx

rT1 (pt+1 − xt+1)

rT3 (pt+1 − xt+1)
, (7)

yd(t+ 1) = oy −
f

sy

rT2 (pt+1 − xt+1)

rT3 (pt+1 − xt+1)
, (8)

in pixel coordinates, where r1, r2 and r3 are the rows of the
rotation matrix R that orients the camera gimbal according
to the LookAt vector and ox, oy define the image center in
pixel coordinates. The corresponding continuous coordinates
of xim and yim on the image sensor are given by:

xim = xdsx, yim = ydsy. (9)

Thus, the video frame coverage percentage for the circular
target ROI is given by:

cs =
2Rim

Hsy
, Rim =

√
x2im + y2im. (10)

where H is the height of the video frame in pixels and sy the
physical height of one pixel.

The above equations can be further simplified by defin-
ing Rim as the perspective projection of pr = [Rt, 0, 0]

T

(in TCS), where Rt is target radius, and by positioning
the UAV/camera at x′ = xt+1 = [0, 0, zd]

T where zd =√
x2t′1 + x2t′2 + x2t′3 is the distance between the target and

the camera. Then, yim = 0, thus, Rim = xim and:

xim =
1

2
csHsy (11)

By utilizing Eqs. (7) and (9), and setting ox = 0:

xim = −fs
r1(pr − x′)

r3(pr − x′)
. (12)

The rotation matrix in this case is described by:

R =

−1 0 0
0 1 0
0 0 −1

 . (13)

and the appropriate focal length can be obtained by:

fs =
csHsyzd

2Rt
. (14)
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Table 1. Mean evaluation results for the proposed shot feasi-
bility rules over all motion types.

Shot type F-measure Precision Recall
LS 0.992 0.991 0.997
MCU 0.956 0.923 0.993
CU 0.926 0.872 0.990
Mean 0.960 0.929 0.994

By exploiting Eqs. (6), (14) and the various camera mo-
tion type-specific variants of Eq. (1), the feasibility of a shot
and motion type combination can be determined on-line at
each time instance.

5. EMPIRICAL EVALUATION

In order to evaluate the presented shot feasibility rules un-
der actual media production conditions, a realistic simulation
was developed. To this end, AirSim [22] was employed, i.e.,
an open source, highly realistic UAV simulation environment
(based on the Unreal 4 real-time 3D graphics engine). The
setup of the realistic simulation involves a moving cyclist and
a UAV equipped with a cinematographic camera which fol-
lows the motion types described in Section 2 and the focal
length of the camera is adjusted so as to implement the LS,
MCU, and CU shot types.

The UAV and target 3D positions can be almost instantly
obtained using simulated GPS sensors in this environment,
thus no 2D visual target tracking is needed in principle; the
target may always be properly framed by orienting the gim-
bal according to the corresponding 3D LookAt vector. How-
ever, the Gaussian noise in the position measurements and
the unpredictable target motion (unpredictable with regard to
its deviations from uniform linear motion, i.e., due to non-
negligible velocity deviation vector qt at time instance t),
make 2D visual target tracking a necessity for finetuning gim-
bal/camera control and, therefore, impose constraints on the
feasible shot types.

At each time instance t, the previous noisy 3D position
of the target (from t − 1) was employed to estimate its ve-
locity. Naively assuming that the target will momentarily fol-
low a uniform linear motion, we estimate its 3D position at
t′ = t + 1 and adjust UAV trajectory and gimbal orientation,
so that the desired central composition framing is maintained.
Then, at time instance t′, we compare the 2D projection of
the estimated 3D target position with the 2D projection of the
ground-truth 3D target position. If the distance of the two ROI
center points is above the Rmax limit, ground-truth tracking
failure is assumed. This is then compared with the predictions
of Eq. (6), regarding the current shot’s feasibility, given the
noisy 3D positions of the target and the UAV, the calculated
target velocity and the estimated target position on the next
video frame. Thus, true/false positive/negative prediction la-

bels are computed for each time instance.
The velocity deviation vector qt in Eq. (1) is simply cal-

culated as the difference between the estimated target veloc-
ity at time instance t− 1 and the actual target velocity at time
instance t (distorted by noise). Therefore, temporally local-
ized constant target acceleration is implicitly assumed in shot
feasibility determination. Such an assumption is too strong
to guide target position estimation itself, thus uniform linear
motion is simply considered in that case, as previously de-
scribed. This is reasonable if no constraints about near-future
target trajectory are provided (e.g., a 3D spline modelling the
road where the cyclist drives). However, it is not too strong to
underpin shot feasibility analysis; it is acceptable to be over
pessimistic about shot feasibility, but significantly more un-
desirable to lose central framing composition and/or induce
2D visual tracker failure, due to erroneous next target posi-
tion prediction. Obviously, a different choice for estimating
qt implies a different target velocity deviation handling pol-
icy, making our model highly flexible.

The mean precision, recall and F-measure of the proposed
rules over all camera motion types are depicted in Table 1,
per shot type. For the evaluation, Rmax was set adaptively to
min( 12H,

wk
sy
Rim), where the latter term is the search region

size, defined by the 2D target ROI radius (in pixels) 1
sy
Rim, a

constant scaling factor w (set here to 1.5, as is the default
value in [23]) and a varying scaling factor k ∈ [0, 1] that
shrinks the search region according to the proximity of the
current ROI to the video frame borders, so as to restrict out-
of-frame ROI translations that would cause 2D tracker drift
and gimbal control failure. The mean UAV-to-target distance
(in the camera motion types where it remains constant) was
set to 30 meters, while the target-modelling sphere radius was
set to 1 meter.

6. CONCLUSIONS

In this paper, previous work modelling industry-standard, cin-
ematographic target-tracking UAV motion types and deriv-
ing a maximum focal length constraint for avoiding 2D vi-
sual tracking failure, was extended. Here, common UAV shot
types have been classified quantitatively and the maximum
focal length constraint has been explicitly adapted to all mod-
elled camera motion types. Then, rules regarding shot feasi-
bility over time are analytically derived and successfully eval-
uated in a realistic UAV simulation environment, achieving
high prediction performance. The proposed rule set can be
readily integrated into UAV intelligent shooting frameworks
for adaptive UAV cinematography planning. Additionally,
learning to predict a more informed vector qt from visual
data, given that the proposed formulas rely on assumed UAV
velocity deviation at each time instance t, as well as tighter
integration with the 2D visual tracker itself, are promising re-
search avenues.
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