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ABSTRACT

Online tracking a specific person from a low-altitude un-
manned aerial vehicle (UAV) is a very interesting and chal-
lenging problem to be solved. However, there exists no
large-scale aerial video dataset regarding this online single
person tracking (OSPT) task. To promote the study of the
OSPT problem in UAV, we first construct a new benchmark
dataset including 100 fully annotated aerial videos with n-
early 130K frames and 11 challenging factors. Second, we
evaluate several state-of-the-art online trackers with real-time
performance using our dataset, considering the potential ap-
plications in the UAV platform. In addition, with respect
to the OSPT problem, we attempt to design a new base-
line method with the combination of tracking, detection and
re-identification and conduct detailed analysis of different
components. This method achieves much better performance
than the existing online trackers, which will serve as a new
baseline for our benchmark.

Index Terms— Object Tracking, UAV, Benchmark

1. INTRODUCTION
Surveillance over unmanned aerial vehicles (UAV) has drawn
increasing attention with the rapid development of low-cost
commercial UAVs. For a low-altitude UAV, accurately track-
ing a specific person will guide the drone to move and zoom
automatically, resulting in a high-quality image observation.
It brings many important applications such as suspect trail-
ing, user following, outdoor navigation and event photogra-
phy. The studies of this online single person tracking (OSPT)
problem are limited without a well-established dataset.

Early UAV aerial datasets (e.g., VIVID [1] and CLIF [2])
have many limitations due to their small sizes, low-quality
sequences or low frame rates, and focus on the vehicle tar-
gets from a high-altitude UAV view. In [3], Robicquet et al.
compile a UAV campus dataset, which records 19K target-
s (e.g., pedestrians, bicyclists, cars and buses) from different
top-view scenes. Such top-view imagery is suitable to tra-
jectory analysis rather than visual tracking since the appear-
ance information is limited in this condition. Although the
UAV123 [4] and TB70 [5] datasets have presented for track-

Fig. 1. Representative frames for our UAVP100 dataset. The
ground truth of the tracked person is annotated by the red
bounding box in each frame.

ing generic objects in UAV, their scales and challenges are
limited for recent trackers with respect to our OSPT task.

In this work, we construct a large-scale dataset for the OS-
PT task in a low-altitude UAV view. Representative frames
are illustrated in Figure 1, from which we can see that our
dataset contains a high diversity of scenes (roads, buildings,
campuses, benches, squares, parks and fairgrounds), person
appearances (e.g., many individuals, varied clothes and differ-
ent activities), and challenging factors (see attribute analysis
later). Our contributions can be summarized as three-fold.

First, we construct a fully annotated high-resolution
dataset for the OSPT problem in a low-altitude UAV view
and statistically analyze its differences compared with several
related datasets. This dataset, named as UAVP100, consist-
s of 100 aerial video sequences with nearly 130K frames.
We note that our UAVP100 is a large-scale benchmark with
respect to the OSPT problem in UAV.

Second, we evaluate 20 state-of-the-art online trackers
with real-time performance and report their tracking results
using two popular metrics and with various attributes. This e-
valuation facilitates the researchers to understand the tracking
performance of existing real-time online trackers.

Third, we design an OSPT algorithm by integrating the
online tracking, person detection and person re-identification
into a unified framework. This method achieves significant
improvement in comparison with state-of-the-art online track-
ers, which can be treated as a new baseline method.
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2. OUR UAVP100 BENCHMARK

2.1. Dataset Construction

We construct a large-scale UAVP100 dataset for online track-
ing the category of persons in UAV whose altitudes varying
between 5-30 meters. This dataset consists of 100 RGB video
sequences captured using DJI Phantom 4, Inspire 2 and Spark
drones, which includes totally 128913 frames with the 1080P
(1920×1080) resolution. The frame rates of all videos are 30
frame per second (fps). We manually annotated the ground
truth bounding boxes every frame, resulting in 125177 anno-
tations as the targets disappear sometimes.

Table 1. Frame comparison of different datasets.
Dataset UAVP100 UAV123-P OTB100-P UAV123 OTB100
#Video 100 55 36 123 100

#Min Frame 306 199 81 109 71
#Max Frame 2210 1783 1698 3085 3872
#Mean Frame 1291 1016 452 914 594
#Total Frame 128913 55861 16258 112467 58260

We show representative frames of UAVP100 in Figure 1,
and then provide frame statistics in Table 1 (in comparison
with UAV123 [4] and OTB100 [6]). The OTB100 dataset is
one of the most popular benchmarks to evaluate online gener-
ic object tracking methods. The UAV123 dataset is most rel-
evant to our dataset, which is designed for online single ob-
ject tracking in UAV. The characteristics of our dataset will
be better presented by comparing it with the two datasets
above. We also create two subsets with respect to person
tracking for further comparisons. For UAV123, we collect all
sequences tracking persons to form a subset (named UAV123-
P) to emphasize the OSPT task. In the same way, we collec-
t an OTB100-P dataset from OTB100. Both total and aver-
age frame numbers in our UAVP100 dataset are significantly
larger than in UAV123-P and OTB100-P and also competitive
even compared with the original UAV123 and OTB100 ones.

2.2. Attribute Analysis

Evaluation with different attributes will facilitate researcher-
s’ understanding the advantages and limitations of a given
tracker in dealing with different challenges (such as occlu-
sion, background clutter, fast motion and so on). Motivated
by the OTB100 [6] and UAV123 [4] datasets, the annotated
sequences in our UAVP100 dataset are categorized into 11
attributes, which are defined as follows. (1) Aspect Ratio
Change (ARC): The quotient between the bounding box as-
pect ratio in the first frame and at least one subsequent frame
is out of range [0.5,2]; (2) Background Clutter (BC): The
tracked object and its surrounding background have similar
appearance; (3) Fast Motion (FM): The center location d-
ifference of the tracked object in two consecutive frames is
larger than 20 pixels; (4) Full Occlusion (FOC): The tracked

object is fully occluded; (5) Illumination Variation (IV):
The target region undergoes significant lighting changes; (6)
Long-term Disappearance (LD): The tracked object disap-
pears in at least 60 consecutive frames (2 seconds) due to full
occlusion or out-of-view; (7) Out-of-View (OV): Most por-
tion of the tracked object leaves the view; (8) Partial Oc-
clusion (POC): The tracked object is partially occluded; (9)
Similar Object (SOB): There exists objects (persons) of sim-
ilar appearance near the tracked object; (10) Scale Variation
(SV): The ratio of the bounding box in the first frame and at
least one subsequent frame is out of range [0.5, 2]; (11) View-
point Change (VC): The viewpoint change affects the ap-
pearance of the tracked object significantly due to the drastic
motion from either camera or object. Figure 2 illustrates the
attribute analysis in our UAVP100 and the compared dataset-
s. We can see that the attributes in our dataset cover more
sequences, which also means each sequence includes more
challenging factors.

Attribute Statistic in UAVP100
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Fig. 2. Attribute analysis. Left: the sequence number of each
attribute in UAVP100; Right: the ratios of representative at-
tributes in different datasets.

2.3. Evaluation Protocol

We follow the one-pass evaluation protocol of OTB100 [6]
and UAV123 [4], where different trackers are compared using
both precision and success plots. The precision plot shows
the percentage of frames whose center location error is small-
er than a certain pixel; while the success plot illustrates the
percentage of successfully tracked frames whose overlap is
larger than a given threshold. Besides, different trackers are
ranked based on the precision score at the threshold of 20
pixels for the precision plot and the area under curve (AUC)
value for the success plot.

3. EVALUATION ON REAL-TIME TRACKERS

3.1. Compared Trackers

To consider the potential applications in UAV, we focus
on evaluating state-of-the-art online trackers with real-time
performance (more than 30fps). These trackers include C-
N [7], STC [8], CFLB [9], KCF [10], BIT [11], SCT [12],
STAPLE [13], SiamFC [14], GOTURN [15], FDSST [16],
CFNet [17], ECO-HC [18], DSiam [19], CACF [20], BACF [21],
STRCF [22], TRACA [23], MCCT [24], ACT [25], and
StructSiam [26]. All above-mentioned twenty trackers are
evaluated using our UAVP100 benchmark.
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3.2. Experimental Results

The above-mentioned trackers are tested on the PC platform
with an Intel i7 3.4 GHz CPU with 32G memory and a Nvidi-
a GTX 1080 GPU with 8G memory. We report the overall
accuracies and average speeds in Figure 3 (a), the basic ob-
servations from which are as follows. First, the trackers with
very fast speeds have not achieved satisfactory tracking accu-
racies (e.g., CN, STC and CFLB) since they merely exploit
the basic correlation filter model with one single low-level
hand-crafted feature (such as gray feature in STC, color fea-
ture in CN). Second, the Siamese-based tracking algorithm-
s (SiamFC, StructSiam) achieve good results with real-time
performance in GPU, where the lightweight deep networks
are exploited to extract deep visual features taking a trade-
off between robustness and efficiency. Third, the top-ranked
trackers in CPU (ECO-HC, STRCF and MCCT) are designed
based on the improved correlation filter models, the combina-
tion of color and texture features, or both. In addition, we re-
port these trackers’ performance in UAV123-P and OTB100-
P datasets for comparisons (see Figure 3 (b-c)). Compared
with Figure 3 (a), we can see that the accuracies of trackers in
our UAVP100 dataset are much lower than those in UAV123-
P and OTB100-P. This comparison further indicates that our
dataset poses more challenges for evaluating a robust and ef-
ficient tracker, especially in a low-altitude UAV view.
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(a) UAVP100
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(c) OTB100-P
Fig. 3. Comparisons of different online trackers in the
UAVP100, UAV123-P and OTB100-P datasets.

4. NEW BASELINE

4.1. Tracking Framework

In this work, our goal is to study the online single person
tracking (OSPT) problem in UAV. It should be better to si-
multaneously consider the merit of online trackers and the
information of person objects for designing a robust track-
er. Thus, we attempt to design a tracking framework by
combining the online tracker, person detection and person
re-identification, the overall flowchart of which is illustrated
in Figure 4. There exist three basic modules in our frame-
work, including Tracker, Verifier and Detector-ReID. For a
given frame, the Tracker module (with an online tracker) is
exploited to determine the object location if the tracker’s out-
put is reliable (judged by Verifier). However, if the Verifier
module treats the tracker being unreliable we will resort to
the Detector-ReID module to re-locate the tracked person.

Frame Pool

Target

Target

Proposals

Target

Proposals

Matching

Frame #1

Tracker Response Map

Detector
ReID Net

HOG

Color-Name Verifier

Fig. 4. The overall flowchart of our new baseline method.
Tracker: We adopt the ECO-HC [18] method as our Tracker
module due to its high accuracy as well as fast speed. In ad-
dition, the ECO-HC tracker could generate a confidence map
for the target in each frame, which facilitates the localization
of the object and verification of the trackers’ reliability.
Verifier: We design a simple but effective verification rule
that takes the confidence map generated by the tracker as the
input. For a normalized confidence map M , its peak value
(i.e., max (M)) should be large enough since it indicates the
candidate score being most likely to the tracked object. In
addition, this peak value should be much stronger compared
with the values of other positions, which can be effectively
measured by the Peak-to-Sidelobe Ratio (PSR) [27]. The PSR
of the confidence map M is defined as

PSR (M) = (max (M) − µΦ (M))/σΦ (M), (1)

where Φ is the sidelobe area around the peak region with 15%
of the confidence map area. µΦ (M) and σΦ (M) denote the
average value and standard deviation of M except area Φ,
respectively. The output of our Verifier can be designed as

Verifier (M) =

{
1, max (M) > tr1, PSR (M) > tr2

0, otherwise
(2)

to consider both absolute and relative strengths of the peak
value. The Verifier outputting 1 means that the tracker is
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reliable and is used to locate the tracked object in the cur-
rent frame. Otherwise, it means that the tracker is unreliable
and we will resort the person detection and re-identification
scheme to re-initialize the location of the target. In practice,
we choose tr1 = 0.6 and tr2 = 13 based on our empirical
observations. In addition, we merely use the Verifier module
every 10 frames to balance the accuracy and speed.

Detector-ReID: There exist no large-scale dataset for train-
ing person detection and re-identification models with respect
to our OSPT task, which brings difficulties for designing our
Detector-ReID module. Since the person appearances in the
low-altitude UAV view have some similar characteristics with
those in normal surveillance scenes, we believe the popular
detection and re-identification algorithms could help us solve
the OSPT problem in UAV to some degree. This work adopts
the YOLOv2 [28] detector trained on ImageNet and the DGD
ReID method [29] trained with several ReID datasets, to im-
plement our baseline within the framework in Figure 4.

When the Verifier outputs 0, the Detector-ReID module
is applied. First, the YOLOv2 detector generates a series
of proposals regrading the persons in the current frame.
Then, the DGD ReID network [29] extracts the deep features
for both template (cropped in the first frame) and generat-
ed person proposals. Finally, the target’s location will be
re-initialized using the detection result with the smallest
matching distance if this distance is smaller than a given
threshold tr3 = 1.1. Otherwise, we will attempt to conduct
Verifier and Detector-ReID every frame until both Tracker
and Detector-ReID modules are reliable.

We note that our baseline method (in Figure 4) is a general
framework for the OSPT task in UAV, which makes the solu-
tion of our task benefit from any technological development
of tracking, detection or re-identification.

4.2. Experimental Results
Quantitative Evaluation: In Figure 5 (a), we report the over-
all performance of the proposed new baseline algorithm (de-
noted as Ours) compared with the original ECO-HC method.
Our new baseline tracker achieves a relative performance im-
provement of 10.5% in precision score. The generalization
ability of our tracker is evaluated using UAV123-P, and the
results show that it also achieves a significant improvemen-
t. In addition, the accuracies of compared methods in our
UAVP100 are much lower than those in UAV123-P. Thus, we
can conclude that our UAVP100 dataset is very challenging
for the OSPT task.

Figure 5 (b) shows that the performance of our new base-
line and ECO-HC methods on different attributes, in terms
of precision score. We can see that our new baseline track-
er consistently improves the tracking performance on all
11 attributes. Among them, significant improvements have
achieved in handling Long-term Disappearance (LD), Full
Occlusion (FOC) and Out-of-View (OV) challenges.
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Fig. 5. The overall performance of our new baseline.

Comparisons of Different Components: We test our base-
line method with varied online trackers, pre-trained detectors
and re-identification methods. First, a good online track-
er facilitates improving the overall performance of the en-
tire framework. We implement some variants with ECO-
HC, SiamFC and FDSST, whose success scores are 0.725,
0.563 and 0.427. Second, we test our baseline method with
some popular detectors including YOLOv2 [28], Faster R-
CNN [30], RPN [31], SSD [31] and ACF [32] methods,
achieving 0.725, 0.716, 0.692, 0.678 and 0.515 success s-
cores. Thus, it is reasonable to choose YOLOv2 as the
basic detector in our baseline method due to its efficien-
cy. Third, we compare popular deep re-identification algo-
rithms in our tracking framework. These methods include
DGD [29], PartReID [33], SVDNet [34], DEP [35] and
MTDNet [36]. Their corresponding success scores are 0.675,
0.651, 0.639, 0.634 and 0.634, respectively. Among them,
the DGD method [29] works the best due to the powerful
deep ReID features learned from multi-domain datasets. We
also implement a baseline ReID method using the L2 distance
with RGB color features, whose success score is only 0.609.
This indicates that the study of person re-identification could
facilitate the OSPT task in UAV.

5. CONCLUSIONS

This work constructs a large-scale dataset for online tracking
persons in the view of low-altitude UAVs. Using this dataset,
we evaluate 20 state-of-the-art real-time online trackers and
report the detailed results in terms of both precision and suc-
cess plots, which facilities the readers’ better understanding
of their potential applications in UAV. Finally, we design a
baseline framework by combining online trackers, pre-trained
detectors and re-identification methods. The results show that
our tracker achieves much better performance, which will be
acted as a new baseline for our benchmark.
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