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ABSTRACT
Thanks to the development of convolutional neural networks
(CNNs), researchers have proposed lots of effective seman-
tic segmentation models. However, there are still two prob-
lems disturbing researchers, one of which is objects misiden-
tification on the image level and another one is poor per-
formance on details, especially the boundary of objects. To
tackle these two problems, we propose Discriminative Fea-
tures Reconstruction Network (DFR) containing two mod-
ules: Second-order Pyramid Features Reconstruction Mod-
ule (SPFR) and Second-order Boundary Attention Module
(SBA). Specifically, SPFR fuses different scales features to
gain pyramid receptive field. Besides, SPFR extracts second-
order statistics data to retrieve more discriminative features.
Furthermore, we put forward SBA that is helpful to refine the
segmentation results. On SBA, low-level features recover lo-
calization details under the high-level feature guidance. Our
DFR achieves state-of-the-art performance on PASCAL VOC
2012 dataset with mIoU accuracy 81.1% without pre-training
COCO dataset and post-processing.1

Index Terms— Semantic segmentation, second-order
statics, attention mechanism, image processing, encoder-
decoder network

1. INTRODUCTION

Semantic segmentation is one of the most important task of
computer vision , which requires dense, pixel-accurate pre-
diction. With the rapid development of deep convolutional
neural networks (DCNNs)[1], researchers make a remarkable
progress on most of computer vision problems including the
semantic segmentation task[2][3][4]. However, these meth-
ods still meet two difficult problems. First, the patches, which
share the same label, may be categorized to different labels.
As shown in figure1(b), the network categorizes some patches
of cow to hoarse. We regard this problem as objects misiden-
tification problem. Second, the network cannot precisely out-
line the boundary of two adjacent patches that have differ-
ent semantic labels. Deep convolution neural network cannot

1Our results can be seen at
http://host.robots.ox.ac.uk:8080/anonymous/IKHF7D.html

Fig. 1. Visualization results on Pascal VOC dataset 2012.
Red rectangles show objects misidentification problem while
blue ones point out poor boundary performance. On the first
row of (b), because the size of receptive field is inappropri-
ate, a pixel of cow with a red rectangle receptive field can be
predicted to be hoarse, regarded as objects misidentification
problem. We cannot distinguish it from hoarse or cow un-
der receptive field of red rectangles. On the second row of
(b), we can see that pixels on the boundary with different la-
bels has heavily overlapping receptive field, which also make
objects misidentification problem. Both first and second row
of (b) show poor performance on boundary. Our Discrimina-
tive Features Reconstruction Network are designed to acquire
multi-scale discriminative features and recover details auto-
matically and effectively. Our results are as shown in (c).

accurately outline the boundary of objects and lose detailed
information, which is called as poor boundary performance.

To tackle these two problem, we rethink the semantic seg-
mentation task. Semantic segmentation is a pixel wise classi-
fication task. First, different from single classification prob-
lem, semantic segmentation task faces a problem that the size
of object varies greatly. It requires network predicts the cate-
gory of each pixel in an appropriate receptive field automati-
cally. Second, the label of a boundary pixel is different from
the label of pixel on the other side but their corresponding
receptive fields overlay heavily. Moreover, the excellent per-
formance of CNN relies on image pooling and other down-
sampling operations which inevitably cause the detail loss.

Our Discriminative Features Reconstruction Network
(DFR) involves two components: Second-order Pyramid
Features Reconstruction Module (SPFR) and Second-order
Boundary Attention Module (SBA). SPFR aims to retrieve
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discriminative multi-scale features while SBA is to refine the
coarse result by providing boundary detail information with
guidance of high-level features. In summary, there are three
contributions in our paper:

First, we analyze the problems of semantic segmentation,
finding that there are the objects misidentification problem
and poor boundary performance influencing the semantic seg-
mentation performance. Thus, we put forward DFR and vali-
date it on Pascal VOC 2012 dataset[5].

Second, we design SPFR to get multi-scale information.
Most importantly, it can acquire more discriminative and
more representative multi-scale features.

Third, we propose SBA, which introduces attention mech-
anism and second order statics to refine the result. SBA get
more precise and smooth prediction by utilizing the low-level
features under high-level features guidance.

2. RELATED WORK

FCN[2] is the first effective semantic segmentation model
based on CNN and many CNN approaches achieve excellent
performance[3][6][7][4].

Multi-scale context: multi-scale context is necessary for
multi-scale objects segmentation. ParseNet[8] just simply ap-
plies global pooling operation to attain global information.
The PSPNet[6] and Deeplab[4] extent it to the multi-scale
pooling or multi-rate atrous convolution and reach a new peak
in the semantic segmentation task. However, these meth-
ods treat all branches equal, do not maintain details informa-
tion and mining more representative statics data, which lower
models ability to tackle objects misidentification problem and
result in poor boundary performance.

Encoder-decoder Network: state-of-the-art segmenta-
tion frameworks shows encoder-decoder structure effective-
ness. It is useful to integrate different levels features to recov-
ers the reduced spatial information caused by down-sampling
operation. For example, SegNet[3] recover information by
recording the pool indices while u-net[9] directly concate-
nates the high-level features and low-level features. However,
these methods just sum up the features of adjacent stages
without considering that different levels features is not equal
and responsible for different parts. Commonly, the improve-
ment on result of these encoder-decoder structure is little.

Attention mechanism: Attention mechanism makes the
network focus on what we want. Many recent works show
the great ability of attention mechanism on many image tasks,
including classification[10] and image segmentation[11].

3. METHOD

In this section, we first introduce our proposed Second-
order Pyramid Features Reconstruction Module (SPFR) and
Second-order Boundary Attention Module (SBA). We explain
how these two modules deal with two important problems

described above. Finally, we elaborate our complete Discrim-
inative Features Reconstruction Network (DFR) architecture.

Fig. 2. Second-order Pyramid Features Reconstruction Mod-
ule. Ada Avg Pooling means adaptive average pooling. +
means element-wise adding operation. * means second-order
features extractor.

3.1. Second-order Pyramid Features Reconstruction
Module

Recently, many models, such as[12][13][6], apply the spatial
pyramid pooling(SPP), ASPP module or Feature Pyramid At-
tention (FPA) to get multi-scale features. However, all these
modules meet local information missing and grids problem,
which will lower their ability to tackle objects misidentifi-
cation problem and blur prediction. More importantly, all
branches are equal. Pooling branches or multi-scale branches
will hamper the models performance and influence the fea-
ture representation on detail. It causes poor boundary perfor-
mance.

Our Second-order Pyramid Features Reconstruction Mod-
ule consists multi-scale branch, local details branch and
second-order features extractor as shown in figure2. First
of all, we need multi-scale branch to encode the different
scales information. It can acquire appropriate receptive field
as shown on the first row of figure1(c). We introduce multi-
scale features extraction. We perform atrous convolution
on feature map. However, only some points are computed
on atrous convolution, which influences the utilization rate of
features[14] and model robustness. To deal with this problem,
we apply adaptive pooling operation after atrous convolution.
Our multi-scale branch can make full use of features and
improve the robustness of network. Besides, our local details
branch aims to maintain the local details features. As de-
scribed above, the atrous convolution has smooth effect and
will make the network lose details information. However, the
local features without global information are also inaccurate.
Under the premise of keeping local features details, we intro-
duce global convolution to local details branch. We design
second-order features extractor as follow:

xi,j = F (i, j, fA, fB) = fA(i, j)
T fB(i, j)

xi,j representation second order feature on the location i, j
while fA and fB are the feature maps from multi-scale branch
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and local details branch. It is inevitably lose details informa-
tion when we directly mix up features come from local details
branch and multi-scale branch. Furthermore, the heavy over-
laying of adjacent pixels’ receptive field requires us acquire
more discriminative features. It is known that higher rank
statics contains more discriminative information[15]. So, our
second-order features extractor can extract second-order fea-
tures and make features more discriminative.

Fig. 3. Second-order Boundary Attention Module.

3.2. Second-order Boundary Attention Module

Decoder architecture is useful to recover the detailed informa-
tion. FCN adopts bilinear upsampling gradually while PSP-
Net directly upsamples the result. Exfuse[16] and Deeplabv3+
prefer to concatenate different levels features and then make a
prediction. Both naive decoder and multi-level feature fusion
decoder neglect the fact that low-level features have more de-
tails information and treat them equal. Actually, the low-level
and high-level features have diverse representation. Here, we
detail our Second-order Boundary Attention Module(SBA).
On the one hand, it is helpful to recover detail information
by introducing low-level but high resolution features to high-
level features. As we describe, the pooling operation and
convolution operation with the stride of 2 cause detail loss.
Moreover, the overlaying of receptive field will be alleviated
when we process high resolution features map. On the other
hand, high level features should be the guidance of low-level
features to select where the localization details should be
recover. As we know, high-level features are abundant with
semantic information while low-level features have more de-
tails features but lack semantic information. Inspired by[17]
and attention mechanism we design SBA, shown in figure3.
First, we perform a convolution on coarse results and then
we apply the boundary extractor to get boundary semantic
features. The boundary extractor formula is shown below:

X = Maxpool(X) +Maxpool(−X)

Maxpool means max-pooling operation while X represents
the feature maps. Through boundary extractor, the values of
pixels not around the boundary are close to zero while others
are not. After that, we apply second-order features extrac-
tor on lower features and boundary semantic features. From

this decoder, we think the lower features just fine-tune the
boundary under the guidance of high-level features. In a way,
Second-order Boundary Attention Module takes the advan-
tage of attention mechanism. Because of boundary extrac-
tor, second-order features of SBA is only none-zero on the
boundary of pixels which makes the SBA pay attention on
the boundary and modify the boundary result. However, the
naive decoder and other decoder will add lower features on
entire higher features, lowing the weight of high semantic fea-
tures and adding too many detailed information in the interior
of an object.

Fig. 4. Overview of the Discriminative Features Reconstruc-
tion Network. We use Xception to extract dense features and
then we perform SPFR to acquire coarse pixel prediction. At
last, we use SBA to recover localization details and extract
precise result.

3.3. Complete Network Architecture

The Xception model[18] has promising image classifica-
tion performance and Modified Aligned Xception used in
deeplabv3+ show its strong potential for the task of semantic
image segmentation. Therefore, we use modified aligned
Xception as a backbone. With our designed SPFR and SBA,
we propose our Discriminative Features Reconstruction Net-
work as shown in figure4. Xception is used as a feature
extractor. SPFR encodes the features and predicts a coarse
result. We believe that the coarse result has good category
prediction but lackluster performance on boundary. SBA, as
a decoder module, refines the uncertain patches of the coarse
result, which is common in boundary.

4. EXPERIMENTAL RESULTS

We evaluate our network on PASCAL VOC 2012 semantic
segmentation dataset which contains 20 foreground object
classes and one background class. The original dataset con-
tains 1464 training images, 1449 validation images and 1456
testing results. We augment the dataset by the Semantic
Boundaries Dataset[19], containing 10,582 images for train-
ing. We conduct a complete ablation study at first and finally
report our excellent performance on PASCAL VOC 2012.
The performance is mainly measured by 21 classes average
pixel intersection-over-union (mIOU).

Our training protocol is the same as [13]. We employ
learning rate schedule with poly policy and initial rate 7e-
3. We train the network using mini-batch stochastic gradient
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Method IoU(%) Pixel Accuracy(%)
Xception baseline 76.42 94.91

Xception with SPFR 79.45 95.50
Xception with ASPP 79.17
SPFR without AAP 79.00 95.40

Table 1. Detailed result of ablation study of second-order
pyramid features reconstruction module. ’ASPP’ means
Atrous Spatial Pyramid Pooling. ’SPFR’ means Second-order
Pyramid Features Reconstruction Module. ’AAP’ means
adaptive average pooling.

Method IoU(%) Pixel Accuracy(%)
SPFR 79.45 95.50

SPFR with FCN decoder 79.59 95.45
SPFR with UNet decoder 80.25 95.60

SPFR with SBA 80.93 95.79

Table 2. Detailed result of ablation study of second-order
boundary attention module.

descent (SGD) with batch size 20. Our image crop size is
512 × 512 and our loss function is the cross-entropy func-
tion averaged over each pixel. We adopt random scale data
augmentation, random flipping and rotation during training.

4.1. Ablation study for SPFR Module

We first use the Xception as our base feature network and
just directly upsample the output without using a decoder.
Then, we test the essential of our proposed SPFR. Our SPFR
improves the performance from 76.42% to 79.45% as table1
shows.

Ablation for second feature extractor: As shown in table
1, our base line has the performance of 76.42% mIoU on the
validation set. First, we compare ASPP module on Xception
result with our SPFR, which is the most important module of
DeeplabV3+. The performance of ASPP is 79.17%. Then, we
perform our SPFR and we get higher perfomance of 79.45%
IoU. From these experiment, we show that our second feature
extractor is useful.

Ablation for adaptive pooling: For the prymaid structure,
we adopt atrous convolution with different atrous rates, which
has low utilization rate of features. To prove our adaptive av-
erage pooling performance, we conduct an experiment with-
out adaptive average pooling. As the results show in table, the
performance without adaptive average pooling fall by 0.4%.

4.2. Ablation study for SBA Module

Since SPFR gets precise pixel-wise prediction on the stride
of 16, SBA pays attention to recover the detail and fine-tune
the result at a higher resolution. Specifically, we perform pro-
jection on coarse result computed by SPFR and then apply

boundary extractor on it. We add lower features with the
stride of 4 and coarse result. To prove effectiveness of our
SBA, we evaluate our SBA network in the base of Xcep-
tion with PSF. In detail, we first test the result of Xception
with PSF as shown on the first row of table 1. Then, we add
FCN decoder, which just add results of different resolutions.
The FCN decoder just gets around 0.1% improvement. Af-
ter that, we perform UNet decoder, which is similar to SBA
without boundary extractor. At last, we test the SBA decoder.
SBA decoder do not treat different levels features equally. It
is shown that our boundary extractor is effective. The result
tells us that low-level features can more accurately refine the
coarse result with the guidance of high-level features. The to-
tal results are shown in table2. We can find that our SBA can
improve the performance from 79.45% to 80.93%.

4.3. PASCAL VOC 2012

Combined our SPFR module and SBA module, we perform
our Discriminative Features Reconstruction Network on PAS-
CAL VOC 2012 test set. In evaluation, we further fine-tune
our network on PASCAL VOC 2012 trainval set for evalu-
ation on the test set. We compare our results with FCN[2],
DeepLabv2, DeconvNet[20], DPN[21] and Piecewise[22].
Details results can be seen in the table3. As the results shown,
our network outperforms lots of state-of-the-art models.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mobike person plant sheep sofa train tv mean
FCN 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

DeepLabv2 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6
DeconvNet 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

DPN 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1
Piecewise 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3

Our 94.5 66.1 83.9 67.5 81.5 92.7 89.7 95.0 36.2 88.2 66.4 90.3 90.2 90.7 88.4 67.9 89.9 62.0 89.2 77.7 81.1

Table 3. IoU(%) results on PASCAL VOC 2012 test set.

5. CONCLUSION

We put forward a novelty discriminative features reconstruc-
tion network for semantic segmentation with remarkable
performance. It contains two modules, second-order pyramid
features reconstruction module and second-order boundary
attention module. Second-order pyramid features module
aims to acquire discriminative multi-scale features while
second-order boundary attention module helps to recover
pixel detailed information. Our experimental results show
that our method has state-of-the-art performance on the se-
mantic segmentation benchmark of PASCAL VOC 2012.
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