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ABSTRACT

Weakly-supervised instance segmentation, which could greatly
save labor and time cost of pixel mask annotation, has at-
tracted increasing attention in recent years. The commonly
used pipeline firstly utilizes conventional image segmentation
methods to automatically generate initial masks and then use
them to train an off-the-shelf segmentation network in an
iterative way. However, the initial generated masks usually
contains a notable proportion of invalid masks which are
mainly caused by small object instances. Directly using these
initial masks to train segmentation models is harmful for the
performance. To address this problem, we propose a kind of
hybrid networks in this paper. In our architecture, there is a
principle segmentation network which is used to handle the
normal samples with valid generated masks. In addition, a
complementary branch is added to handle the small and dim
objects without valid masks. Experimental results indicate
that our method can achieve significantly performance im-
provement both on the small object instances and large ones,
and outperforms all state-of-the-art methods.

Index Terms— Weakly-supervised, Instance Segmenta-
tion, FPN

1. INTRODUCTION

Instance segmentation, which serves as a fundamental task for
a broad set of vision applications, such as remote sensing [1],
medical imaging [2], and automatic drive [3], has attracted
extensive attention and made large progress in the recent
years. Most state-of-the-art methods [4, 5, 6] rely on large-
scale dense annotations for training deep networks and show
promising performances among the challenging benchmark
datasets, including COCO [7], CityScapes [8] and PASCAL
VOC [9]. However, annotating pixel-level labels for object
instances is particularly expensive and time-consuming [10].
Comparing with complex and enormous pixel-level masks,
some weakly annotations are much easier to obtain, e.g.,
points, scribbles, bounding boxes and image-level labels.

Fig. 1. The distribution of different sizes (areas) within ini-
tial invalid object instances from GrabCut [11]. The invalid
masks concentrate on small object instances

Therefore, investigating the potentials of weakly supervised
instance segmentation can effectively mitigate the labor cost,
showing great practical significance.

In the weakly supervised instance segmentation realm,
bounding box annotations are widely utilized due to two as-
pects. On one hand, bounding boxes provide precise position
and category information. On the other hand, they can be
used as a prior information for conventional methods, e.g.,
GrabCut [11] and MCG [12], to generate initial pixel-level
mask labels, abbreviated as mask in the follows. BoxSup
[13] generated initial masks using MCG based on bounding
boxes and then proposed an iterative training procedure to
obtained a good instance segmentation model. Khoreva et al.
[14] employed GrabCut and MCG to generate delicate fake
masks from the given box-level annotations and then adopted
off-the-shelf segmentation network to implement weakly-
supervised instance segmentation. In [15], the masks came
from the intersection of the labels generated by GrabCut and
MCG. Like BoxSup [13], the generated masks were refined
in an iterative training fashion. Among aforementioned meth-
ods, the quality of initial segmentation masks from GrabCut,
as well as MCG, relies on the sizes of bounding boxes,
namely the sizes of object instances. The masks from large

1917978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



Fig. 2. Illustration of our framework.

object instances routinely are of good quality, while small
object instances tend to be of poor quality. Because we have
no ground-truth for the object instance mask, the quality is
roughly estimated by the intersection-over-union (IoU) be-
tween the bounding box of the automatically generated object
instance mask and the ground-truth bounding box. In this pa-
per, one generated object instance mask is considered to be
invalid if the IoU is under 0.5. Figure 1 shows the distribution
of object instances in invalid masks obtained by GrabCut.
It can be obviously observed that the scales of objects with
invalid masks are of a wide range, but mainly concentrates
on small object instances. Statistically, invalid small object
instances whose size is less than 64×64 pixels, accounts for
55.54% in invalid object instances, but accounts for 76.48%
in all small object instances with both invalid and valid ones.
In contrast, invalid large object instances whose size is big-
ger than 64×64 pixels only accounts for 23.20% in all large
instances with both invalid and valid ones. The total invalid
object instances within the initial masks can reach 30% of all
masks. This notable proportion of invalid masks is harmful
for directly training models, even using the iterative training
technique as done by some of above methods.

Based on above statistical analysis and observations, we
propose a hybrid instance segmentation network. In this ar-
chitecture, a principle segmentation network is trained using
only the samples with valid masks. Noteworthy, according
to our statistics, the majorities of valid samples are large ob-
ject instances. Thus, in this network, the training samples
are mostly unified and pure, which is beneficial to the overall
training. In addition, an Enhanced-FPN architecture is added
to this branch to reduce the transfer distance of low-level fea-
ture, providing more localization information. For the invalid
object instance masks which have correct bounding boxes, we
design a complementary branch to handle these hard samples
which mainly consist of small and dim object instances as
discussed before. The proposed architecture is evaluated on
the validation set of PASCAL VOC 2012, and the experimen-
tal results reveal that our method can achieve significant im-

provement on the aforementioned difficult samples, showing
the effectiveness of the complementary framework.

2. THE PROPOSED METHOD

As illustrated in Figure 2, the framework of our method con-
tains two branches: a large object instance branch and a small
object instance branch. The large object instance branch co-
operates detection and segmentation simultaneously to handle
the large object instance segmentation, while the small object
instance branch sequentially conducts detection and segmen-
tation to avoid the omission of small object instances.

In the training stage, we firstly use GrabCut [11] to auto-
matically obtain initial object instance masks based on given
bounding box annotations. Then, we divide the initial masks
into two groups according to the IoU as described previously:
valid masks and invalid masks. The former is used to train the
large object instance branch, while the latter is used to train
the small object instance branch. In the test stage, images are
simultaneously fed into two branches and the segmentation
results from both branches are fused to obtain the final re-
sults. Specifically, all the object instance segmentation results
with size less than 64×64 pixels come from Non-maximum
Suppression (NMS) results of both small and big object in-
stance branches, and all the object instance segmentation re-
sults with size more than 64×64 pixels come from the big
object instance branch.

2.1. Large object instance branch

The large object instance branch is built on Mask R-CNN
and improved based on our weakly-supervised task. It is
composed of four components, including raw feature ex-
traction (Enhanced-FPN module), proposal generation (RPN
module), bounding-box recognition (Detection module) and
mask prediction (Segmentation module). First, We adopt
ResNet-50 with Enhanced-FPN as the backbone. Specifi-
cally, the conventional Feature Pyramid Network (FPN) [16]
architecture is replaced by our Enhanced-FPN to improve
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Fig. 3. Illustration of our Enhanced-FPN structure.

the performance. The Enhanced-FPN and implementation
details will be introduced in the section 2.3. Then, RPN
[17] is utilized to generate proposals. After handled by the
RoIAlign [5] operation, each proposal becomes a fixed-size
feature map. Finally, bounding-box recognition and mask
prediction are implemented simultaneously through this fea-
ture map. The detection branch conforms to the spirit of the
fast R-CNN [18] to realize localization and classification, and
the segmentation branch uses FCN [19] to achieve pixel-level
prediction.

2.2. Small object instance branch

Small object instance branch served as an important comple-
mentary module of large objects branch, focuses on small ob-
ject instances segmentation. Without the existence of noisy
labels, this branch can get better detection performance. In
addition, the morphological characteristic ensures better seg-
mentation performance of small object instances. Under the
supervision of the box-level annotations, this branch first does
object detection by Faster R-CNN [17]. The detection results
offer the bounding boxes information for GrabCut to obtain
final segmentation. For these segmentation results with poor
quality, we replace them with ellipses. In this process, these
basic modules are similar to that of the large object branch.
The main difference between these two branches is the execu-
tion fashion of detection module and segmentation modules.
The large object instance branch conducts detection and seg-
mentation simultaneously, whereas the small object instance
branch conducts them sequentially.

2.3. Enhanced-FPN

Enhanced-FPN is improved based on FPN. There exists two
problems in conventional FPN. On the one hand, FPN treats
different feature maps unfairly. It is well-known that FPN
adopts the top-down fusion pattern to increase localization
accuracy. High-level semantic information is gradually trans-
ferred to the low-level feature map, so each low-level feature
map includes the information of high-level feature map. How-
ever, the high-level feature is not enhanced adequately. On the

Fig. 4. Illustration the connection type of our Enhanced-FPN.
(Note: conv m × m/sn means a convolution whose size is
m × m and whose stride is n. Relu means a rectified linear
unit)

other hand, there is a long path from low-level to topmost fea-
tures and this introduces difficulty to access accurate localiza-
tion information [6]. Therefore, we propose an Enhance-FPN
to balance the enhancement function of every feature maps,
and shorten the propagation distance of bottom feature maps.
The framework of Enhanced-FPN is illustrated in Figure 3.
There are multiple structures that the lateral feature map con-
nects with bottom feature map. The specific connection type
is shown in Figure 4.

2.4. Implementation Details

Most hyper-parameters in Mask R-CNN are applied to our
first branch. Specifically, We train on 3 GPUs (so effective
minibatch size is 6) for 30k iterations, with a learning rate of
0.005 which is decreased by 10 at the 20k and 26K iteration,
respectively. We use a weight decay of 0.0002. In addition,
we use images with shorter edge randomly sampled from 600,
800 for training and with shorter edge 600 for inference. The
longer edge of the images is 1000 for both training and in-
ference. For the second branch, it shares the identical hyper-
parameters with the first branch except the learning rate. Its
learning rate is 0.0075.

3. EXPERIMENTS

3.1. Dataset and metrics

The PASCAL VOC dataset involves 20 semantic categories
of objects, which is extensively used in the field of weakly-
supervised tasks. Following the previous work [14, 20], we
utilize additional images from the SBD dataset [21] to obtain
a training set of 10582 images, and report all of the experi-
mental results on the validation set, including 1449 images.
We adopt the widely used metrics in instance segmentation
community, including mAPr

0.5 and mAPr
0.75. And the Av-

erage Best Overlap (ABO) [22] metric is also employed for
evaluation to give a different perspective.
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Table 1. Results of different methods on the PASCAL VOC
2012 val.
Supervision Methods mAPr

0.5 mAPr
0.75 ABO

box-level DeepMask[14] 39.4 8.1 45.8
box-level DeepLabBOX[14] 44.8 16.3 49.1
box-level Ours 51.3 22.4 51.9
pixel-level Ours 56.5 29.6 57.4

3.2. Comparison with state-of-the-art methods

Four state-of-the art methods are selected for comparison, in-
cluding DeepMask [14] and DeepLabBOX [14], soft proposal
networks (SPN) [23] and peak response maps (PRM) [20].
The former two methods are based on bounding-box level
with the same configuration for weak supervised instance seg-
mentation, while the latter two ones are based on the image-
level label. The results of different methods are shown in Ta-
ble 1. It can be observed that our method obviously outper-
forms all state-of-the-art methods in terms of all metrics. We
can also see that the bounding-box-based methods are totally
better than the image-label-based methods. This is because
bounding boxes offer more precise information than image
labels for instance segmentation. Among three bounding-
box-based methods, the performance of our method is evi-
dent, especially in terms of metrics of mAPr

0.5 and mAPr
0.75.

This is due to that our method not only improves the instance
segmentation of large objects, but also improves the instance
segmentation of small objects. From the late row of the Table
1 where “pixel-level” means supervised instance segmenta-
tion, we can see that the In addition, the performance of our
weakly supervised method with only bounding box informa-
tion is close to our supervised version with precise pixel mask
information for training. This is further verify the effective-
ness of our weakly supervised method.

3.3. Effect of two-branch structure

To understand the effect of two-branch structure, we conduct
a series of experiments on weakly-supervised instance seg-
mentation task. Firstly, Mask R-CNN serves as the base-
line network architecture for this task. Secondly, our two-
branch network is decomposed into two one-branch struc-
tures,including small-branch structure and big-branch struc-
ture, to conduct controlled experiments. Finally, the perfor-
mance our two-branch structure is reported. To be fair, all of
these networks take ResNet-50 as the backbone. And each
network is evaluated on the PASCAL VOC 2012 val in terms
of AP, APS and APL. Corresponding results are shown in
Table 2. They clearly show that our two-branch structure
achieve the best performance on all metrics. Among them,
small-branch structure has performance advantage on small
object instance, while big-branch structure has performance
advantage on big object instance. So the small-branch struc-

Fig. 5. Visual results on PASCAL VOC validation set. The
first column is the original images, the second column are the
results of the single branch method, and the last column is the
results of our method.

ture and the big-branch structure present obvious complemen-
tary superiority, which demonstrated the reasonableness our
two-branch structure.

Table 2. Effect of two-branch structure on the PASCAL VOC
2012 val in terms of AP, APS and APL.

Methods AP APS APL

baseline 23.73 6.75 27.75
samll-branch 18.91 8.42 22.24
big-branch 25.14 7.11 29.45

ours 25.20 8.52 29.48

3.4. Quality analysis

Figure 5 shows some representative results of our methods.
Note that the second column are results of our large ob-
ject instance branch trained by all initial generated masks
including both invalid and valid masks. This is similar to
commonly used weakly supervised instance segmentation
pipeline. From Figure 5, we can observe that our method
achieves significant improvement on the small object in-
stance segmentation through adding a complementary small
object instance branch.

4. CONCLUSION

We propose a novel hybrid segmentation network to handle
the invalid mask problem in initial generated masks in the
weakly supervised instance segmentation task. The proposed
hybrid network consists of two branches. One branch cooper-
ates detection and segmentation simultaneously to handle the
large object instance segmentation, while the other sequen-
tially conducts detection and segmentation to avoid the omis-
sion of small object instances. Experimental results reveal
that our method outperforms state-of-the-art methods, and has
obvious advantage on the small object instance segmentation.
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