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ABSTRACT

Features that capture textural patterns of a certain class of im-
ages are crucial for texture segmentation tasks. This paper
introduces a data-centric approach to efficiently extract and
represent textural information, which adapts to a wide variety
of textures. Based on the strong self-similarities and quasi-
periodicity in texture images, the proposed method first con-
structs a representative texture pattern set for the given im-
age by leveraging the patch clustering strategy. Then, pixel-
wise texture features are designed according to the similari-
ties between local patches and the representative textural pat-
terns. Moreover, the proposed feature is generic and flexible,
and can perform segmentation task by integrating it into var-
ious segmentation approaches easily. Extensive experimen-
tal results on both textural and natural image segmentation
show that the segmentation method using the proposed fea-
tures achieves very competitive or even better performance
compared with the stat-of-the-art methods.

Index Terms— Unsupervised texture segmentation,
Data-centric feature extraction, self-similarity

1. INTRODUCTION

Image segmentation is one of the most fundamental tasks in
image processing and computer vision research, which has a
wide range of applications like autonomous driving, remote
sensing and medical image diagnosis. Herein, texture seg-
mentation is a more frequently occurring problem appearing
in various circumstances, which partitions an image into mul-
tiple regions with similar textural patterns. However, due to
the complexity of the textures, their segmentation is more
challenging compared with that on natural images, where the
structures are more regular.

In the past decades, texture analysis and segmentation[1,
2, 3, 4] have been well studied and numerous methods have
been proposed. For these methods, the local features rep-
resenting image structural information play a crucial role
in segmentation task by integrating into machine learning
frameworks. Especially, various handcrafted features have
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been designed to characterize textural patterns. Herein, fil-
ter banks are very popular feature extraction schemes, such
as Gabor filters[1], gradients filters, Laplacian filters, and
Gaussian filters. The responses to such filter banks, as well
as statistics based on them, are used to obtain local texture
features[5]. Another type of textural features include Local
Binary Patterns[6], co-occurrence matrices [7], and wavelet
transforms [8, 3].

For unsupervised texture segmentation, those features
should be further processed with some well-defined algo-
rithms, e.g., graph cut, clustering[1, 9], and region merging.
More recent works employing matrix factorization[10] and
energy function minimization [11, 12] have achieved excel-
lent performance in segmentation. However, these works
mainly focus on the segmentation part without specifically
local feature design, and the further improvement of their
performance is prohibited by the limitations of the existing
local feature extraction strategies.

The first limitation for most of the existing local feature
extractors, e.g. filter banks, is the inefficient adaptivity to var-
ious texture contents due to the pre-defined filter parameters.
Therefore, the effectiveness of these local features varies sig-
nificantly from different classes of texture or even depends on
a single texture image. To overcome this problem, a straight-
forward method [10, 11] is to manually select a subset of fil-
ters from the aforementioned large set of filter banks, with a
belief that there are filters suitable for the textural patterns in
the processed images. However, the manual selection requires
human experience and insights, which typically is an expen-
sive and time-consuming task. In such situation, it would be
desirable to have a feature extraction method which can au-
tomatically adapt to various kinds of texture image and learn
effective features in a data-driven manner.

Besides the adaptivity, the absent of the global contrast in-
formation in existing local features, the computation of which
is constrained inside small image patches, makes them are
blind to image context. The contrast information between
texture and its context in a image is never taken into account
during the whole feature extraction process, and only utilized
in subsequent segmentation part, which limits the generaliza-
tion of the local features. In addition, the high dimensional-
ity of existing local features increases the computational bur-
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dens since the segmentation algorithms need to calculate the
feature distance. FSEG method[10] introduces a matrix fac-
torization model to bypass iterative high-dimension distance
calculations and achieves fast segmentation. The PCA-MS
method[11] employs principal component analysis(PCA) to
reduce dimension explicitly, which shows the inherent redun-
dancy of those handcrafted local features. Therefore, a good
solution is to design a compact texture features to deal with
various texture patterns adaptively by leveraging both the im-
age local and global information.

In this paper, we propose a data-centric textural feature
extraction method using Principle Representative Patterns.
The proposed method clusters image patches, and selects
those cluster centroids as major patterns, denoted as Princi-
ple Representative Patterns(PRP). Texture features are con-
structed by measuring the similarities between local patch and
those Principle Representative Patterns. Herein, the contrast
information is utilized the proposed feature representation,
which further improves their discriminative power. The pro-
posed PRP features can perform image segmentation task
by further integrating them into existing segmentation algo-
rithms. Since the proposed method is a data-driven strategy
in an unsupervised manner, it is adaptive to various textural
structures. Moreover, it offers compact feature representation
with a tunable hyperparameter to control the feature dimen-
sion. Extensive experimental results on both textural and
natural image segmentation tasks show the superiority of the
proposed method.

2. TEXTURAL FEATURE BASED ON PRINCIPLE
REPRESENTATIVE PATTERNS

2.1. Pixel-wised Texture Representation

To tackle the unsupervised texture segmentation problem, we
first build a pixel-wised texture representation. Since the tex-
tural information is based on local structures instead of a sin-
gle pixel, we model our texture representation in basis of im-
age patches. Given an image I , the texture information of
each pixel i, denoted as T (i), is represented as below,

T (i) = {w(Pi, Pj)| j ∈ I},∀i ∈ I. (1)

Herein, we use the function w(Pi, Pj) to describe the rela-
tionship between two patches, Pi and Pj . Pi denotes of a
square patch of the fixed size and centered at a pixel i.

It is obvious that T (i) ∈ RN is a high dimension vector,
where N is the number of pixels in image I . It will be com-
putationally unacceptable to utilize T (i) directly. Inspired by
the strong self-similarity and quasi-periodicity of texture im-
ages, we assume that there exist a set of Principle Representa-
tive Patterns (PRPs) in image I , and they contain all the major
textural patterns of the image. Then, we can only use these
PRPs to describe T (i) to reduce the dimension of the feature
vector in Eq.1, with a negligible information loss. Thus, the

(a) (b) (c)

Fig. 1. Segmentation results step by step. (a) A texture mosaic
with 5 different components from Brodatz texture dataset. (b)
Raw segmentation results with proposed PRP features. (c)
Final segmentation mask after post-processing.

feature vector can be rewritten as,

T (i) = {w(Pi, Pj)|Pj ∈ R},∀i ∈ I, (2)

where R denotes the set of all Principle Representative Pat-
terns selected for the image I .

Our texture feature T (i) model above considers not only
the local patch Pi, but also its contrast with patches among the
whole image, including local and non-local ones. Moreover,
the whole process is driven by the processed data in an un-
supervised manner, and the usage of PRPs provides us more
freedoms in dimension control of T (i) by manipulating the
cardinality of R. Another thing need to be noticed is that we
only use image patch Pi here to illustrate our idea, and Pi

could actually be extended to generalized feature representa-
tion g(Pi) extracted from Pi.

2.2. Principle Representative Pattern (PRP)

To select those representative patterns among all possible can-
didates in image I , an effective method is to select one patch
from a collection of very similar patches as the representative
one. We preform the K-means clustering method to get clus-
ter centroids {ui}Ki=1 on all the image patches of I according
to the following distance metric,

argmax

K∑
i=1

∑
j∈I

Dist(Pj , ui). (3)

Those cluster centroids are utilized to form the Principle Rep-
resentative Pattern set R. The number of centroids, K, could
be tuned as hyperparameter in practice according to the per-
formance requirement and computation source limitation.

The idea of Principle Representative Pattern tries to di-
rectly take advantage of the unique properties of texture
images, i.e., quasi-periodicity and self-similarity. In other
words, it uses the fact of high degree of redundancy in texture
images. In fact, natural images also contain different levels of
redundancy, and the proposed feature representation can also
be extended to natural images.
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2.3. PRP Features and Segmentation

With the Principle Representative Patches, we could get T (i)
by computing the similarities between each image patch Pi

and PRPs. Inspired by the famous non-local means denois-
ing algorithm[13], we employ Gaussian weighting function
to measure the similarity between two patches.

w(Pi, Pj) =
1

Z(i)
e
‖Pi−Pj‖22,σ

h2 , (4)

where σ > 0 is the standard deviation of the Gaussian kernel,
h is a smooth factor and Z(i) is a normalization constant.

Z(i) =
∑
j

e
‖Pi−Pj‖22,σ

h2 . (5)

Based on the above formulation, the proposed textural fea-
ture, T (i), can be interpreted as a probability mass function,
or an energy spectrum. Each entrance of T (i) describes the
probability of Pi to be this major textural pattern, or energy
that Pi projects to the corresponding representative textural
pattern. Higher value means higher probability and intense
energy concentration, while lower value offers complemen-
tary side evidences to better describe Pi.

The proposed method can be further extended to a gen-
eral feature encoding technique. Replacing local patch Pi

with any local feature, our method could encode those lo-
cal features into a compact and context-aware form. The
generated feature map {T (i)} is also completely flexible to
be combined with any cutting-edge segmentation algorithms,
such as Mumford-Shah functional [11] and matrix factoriza-
tion method [10]. The above facts make our method have full
potential to evolve with emerging local features and segmen-
tation algorithms in the future.

3. EXPERIMENTAL RESULTS

We show segmentation results on various natural and textural
images in the real world and, then, provide quantitative eval-
uations by comparing the proposed method with other stat-
of-the-art methods on the Prague Unsupervised Texture Seg-
mentation Benchmark [14, 15].

3.1. Qualitative Segmentation Results

We first test it on several natural scene images and animals
images. Fig.2(a) illustrates some examples of the segmen-
tation results using the proposed features, and those images
are from Berkeley Segmentation Dataset(BSDS500) [16]. We
can find that the proposed approach obtains all of main re-
gions segmented correctly, even without any usage of object-
specific knowledge. Although there are still some flaws, e.g.,
the missing of goose’s beak and the merging for trees and

(a) Natural scenes and animals

(b) Ground Terrain Textures.

(c) Histology images.

Fig. 2. Segmentation results of various natural texture images
in the real world.

their shadow, those flaws are reasonable since no semantic
meaning is included in our model.

We also test the proposed method in the ground ter-
rain textures, which can be seen everywhere and have many
variations under different weather and lighting conditions.
In Fig.2(b), some examples from Ground Terrain Outdoor
Scenes Dataset(GTOS) [17] are showed with the correspond-
ing segmentation results. The boundaries between two dif-
ferent terrain are shape and fine in segmentation map, which
proves that the proposed method has an excellent ability to
handle different terrain textures and even on the situation
where texture is nonuniform and noisy.

Histology image segmentation which provides precise lo-
cation information of different tissues is always desirable by
surgeons and researchers. Fig.2(c) shows several histology
images with segmentation results using the proposed method.
We can see that the irregular boundaries between two tissues
are well-located, and both main regions and secondary re-
gions can be well distinguished and separated.

3.2. Comparison Results on Texture Mosaics

We further compare our method with three state-of-the-art
methods on the Prague segmentation benchmark, which con-
tains 80 color texture mosaics of size 512 × 512. For each
of the 80 texture mosaics, we learn a separate set of Princi-
ple Representative Patterns(PRP) and compute the segmen-
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Table 1. Comparison Results of proposed approach with various segmentation methods on the Prague Unsupervised Texture
Segmentation Benchmark. Up arrows indicate better results correspond to large values, and down arrows the opposite. Boldface
highlights the best, and a star denotes the second-best value in each column.

Method CS↑ OS↓ US↓ O↓ C↓ CO↑ CC↑ I.↓ II.↓ RM↓
PMCFA[18]1 75.32 11.95∗ 9.65∗ 4.51 8.87 88.16 90.73∗ 11.84 1.47 3.76

Ours 72.75∗ 8.11 9.80 6.76∗ 6.18 87.20∗ 87.65 12.80∗ 2.28 3.72∗

PCA-MS [11] 72.27 18.33 9.41 7.25 6.44∗ 85.96 91.24 14.40 1.59∗ 4.45
FSEG [10] 69.18 14.69 13.64 9.25 12.55 84.44 87.38 15.89 2.60 4.51

Fig. 3. Example results on Prague dataset. The first row shows original images, the second row shows ground truth, the third
shows segmentation results from FSEG[10] and the last row shows results from the proposed method.

tation results subsequently. The parameters for learning the
features are set empirically and remain fixed for all instances
in the dataset. The images are converted from RGB color
space to L*a*b* color space, which is more perceptually uni-
form. The patch size is 7× 7, the number of PRPs is 50, and
the scale parameter of Gaussian kernel is 0.1. To avoid us-
age of prior knowledge about the number of different textures
components, we determine the number of clusters automati-
cally by search it according to overall intra-cluster distance.
Furthermore, the Conditional Random Field(CRF)[19] with
a local voting scheme is utilized to refine the segmentation
boundary as post-processing.

Table 1 shows numerical results for various segmentation
schemes, where the best and the second best results are high-
lighted by boldface fonts and asterisks, respectively. We see
that the proposed method offers the top 2 results on most
evaluation metrics. It achieves the best scores in over seg-
mentation (OS) and commission error (C) metrics. In total,
our method achieves 2 best scores and 5 second-best scores

1Detailed introduction of PMCFA algorithm could be found online at
https://sites.google.com/site/costaspanagiotakis/research/imagesegmentation

among those 10 indicators. Fig. 3 shows the visualization re-
sults of segmentation on texture mosaics where the amount of
texture components changes from 3 to 12 corresponding the
images from left to right. We can see that the segmentation
results by our method are very approach to the ground truth
in most cases, and obviously outperforms FSEG. We also no-
tice that the errors mainly occur in mosaics with higher num-
ber of components, e.g., the first and second images from the
right side. This is because the optimal hyperparameter setting
for an image mosaic with a different number of components
should be quite different, but we have to make a trade off to
get an unified hyperparameter setting for the whole dataset.

4. CONCLUSION

An effective textural feature extraction method for unsu-
pervised texture segmentation was presented. Features are
learned from data in an unsupervised manner. They encode
local features as well as contrast information. It was shown
by extensive experimental results that the proposed method
offers the state-of-the-art performance.
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