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ABSTRACT

Semantic segmentation is one of the basic topics in computer
vision, it aims to assign semantic labels to every pixel of an
image. Unbalanced semantic label distribution could have
a negative influence on segmentation accuracy. In this pa-
per, we investigate using data augmentation approach to bal-
ance the semantic label distribution in order to improve seg-
mentation performance. We propose using generative adver-
sarial networks (GANs) to generate realistic images for im-
proving the performance of semantic segmentation networks.
Experimental results show that the proposed method can not
only improve segmentation performance on those classes with
low accuracy, but also obtain 1.3% to 2.1% increase in aver-
age segmentation accuracy. It shows that this augmentation
method can boost the accuracy and be easily applicable to
any other segmentation models.

Index Terms— Data augmentation, generative adversar-
ial networks (GANs), semantic segmentation

1. INTRODUCTION

Semantic segmentation aims to assign semantic labels to ev-
ery pixel of a given image, it is one of the basic tasks in com-
puter vision. Recently, many deep learning models [1, 2, 3, 4]
are proposed and have achieved great performance on this
task. However, deep learning based segmentation is always
data-hungry and needs huge amount of fine pixel-level labeled
data, which are always hard to collect, not to mention the fact
that manual annotations may have a huge cost. Most pre-
vious work focus on improving the structure of deep neural
networks (e.g. adding more layers [5]) to improve the accu-
racy, yet this approach can only improve average segmenta-
tion accuracy. In some practical applications, we may need
to improve the performance of some specific classes as they
may contain critical information. Unbalanced label distribu-
tion is one of the reasons causing low performance in segmen-
tation. Using data augmentation for enlarging training set can
yield better results and that has reported in various literature
[6, 7, 8].
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In this research, we consider using Generative Adversar-
ial Networks (GANs) [9] for data augmentation in order to
improve the segmentation accuracy. GANs are well used in
computer vision and image processing [10, 11] for generat-
ing realistic images by learning true label distribution in a
zero-sum game framework. Realistic image generation is a
kind of image-to-image translation. The goal is using a se-
mantically labeled image to generate a photographic image.
Several methods have been proposed for this task including
cascaded refinement networks [12], conditional GANs [13],
and semi-parametric synthesis [14].

Data augmentation is simply the extension of the training
data with generated data. Existing data augmentation tech-
niques can roughly fall into two following categories: (a) ge-
ometric transformation which is computationally cheap and
generic. (b) guided-augmentation or task-specific methods
which using specific labels to generate image data [15]. In
the case of image classification, some methods like Affine [7],
elastic deformations [8], patches extraction and RGB chan-
nels intensities alteration [6] are all belong to this category.
However, these methods only lead to an image-level trans-
formation which only change depth or scale of image. They
can improve the robustness of neural network, but actually no
help for dividing a clear boundary between data manifolds.
These methods do not improve the label distribution which is
determined by higher-level features. As for the second type
of data augmentation, many complex manipulated augmen-
tation schemes have been proposed in fields such as scene
text recognition [16], text localization [17], person detection
[18], and emotion classification [19]. They all demonstrate
the great performance on synthetic data.

Our work is most similar to [19], in which GANs are used
to improve classification accuracy on classes with imbalanced
data. In this paper, in order to boost the performance in seg-
mentation tasks, we explore how to use GANs to generate
supplementary data with pixel-level annotation labels and bal-
ance data-distribution within the dataset. The main contribu-
tions of this paper are as follows: (1) we propose a pipeline
model for data augmentation by using GANs to generate sup-
plementary data for semantic segmentation. (2) We propose
a new method for image augmentation at pixel-level. (3) We
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Fig. 1: Our pipeline model for data augmentation, where se-
mantic labels car, tree and people can be used to reconstruct
a new label map.

improve the data distribution and increase segmentation accu-
racy of both specific classes and on average.

2. METHODOLOGY

The main idea of our method is generating supplementary
(augmented) data for semantic segmentation to balance the
distribution of semantic labels and improve the segmentation
results. Fig. 1 schematically shows the procedure of the ap-
proach we proposed. The first step is training a GAN on orig-
inal image/label pairs, it is used as a generator to transfer any
human-designed semantic label maps (see Fig.2b and 2c) to
realistic images. In the second step, we use generated sup-
plementary image to balance label distribution. Finally, we
use supplementary data and original image data to train the
segmentation network for better segmentation results.

2.1. Training Data Generator

We use the Pix2pix HD [13] model to generate realistic im-
ages given a specific semantic label map as our data generator.
Real images (e.g. Fig. 2a) and their corresponding semantic
label maps (e.g. Fig. 2b) from the original dataset are trained
in pairs. Besides the generator G, there is a discriminator D
to help completing the whole training process. G and D con-
stitute Generative Adversarial Networks (GANs) [9] . The
aim of generator G is to transfer semantic label maps to real-
istic images, while the discriminator D is used to distinguish
real images (original images) from fake and realistic images
generated by the generator G. We use minimax algorithm to
model the strategy.

min
G

max
D

LGAN (G,D) (1)

(a) (b)

(c) (d)

Fig. 2: An original image (a) and its corresponding seman-
tic label map (b). We select several semantic labels including
street, car, vegetation and etc. to reconstruct a new semantic
label map (c). Then we use GANs to generate its correspond-
ing realistic image (d).

2.2. Synthesis of Training Data

We create a new synthesis dataset based on reconstructed la-
bel maps and generate corresponding realistic images to train
semantic segmentation networks. To begin with, we separate
each semantic label map in training set according to class of
labels. Given a dataset of size N with K class of labels, we
use I1, I2, ..., IN to represent corresponding semantic label
maps of given original images. Separating those maps, we
can then extract m(m ≤ K) semantic labels from each map.
We represent this process by: I −→ {L1, L2, ..., Lm}, Li ∈ L
and |L| = K. Note that because one pixel only has one an-
notation, L1 ∩ L2 ∩ ... ∩ Lm = φ. In this way, one semantic
label map can be separated into m single label maps.

Then, we can reconstruct semantic label maps with these
semantic labels. We arbitrarily select n semantic labels Lj ∈
L for j = 1, · · · , n. Note that here, Lj for j = 1, · · · , n
may come from different label maps, so they are not mutually
exclusive. We combine them together to form a new label
map (Fig. 2c). The process can be presented as following:
{L1, L2, ..., Ln} −→ R. We design several specific ways to
reconstruct the new label maps (details are explained in exper-
imental study). We can change the semantic label distribution
by modifying the proportion of each label in the images. With
the recombined label maps, we can generate realistic images
(Fig. 2d) by the data generator trained in Section 2.1.

2.3. Segmentation Using Data Augmentation

We use both original data and supplementary data (generated
data) to train the semantic segmentation network. In the train-
ing process, we first train segmentation network with supple-
mentary data. In this way, we can get a better initialization
which contains the prior of some rare classes. Then, we use
original dataset to fine tune the network. We use random ini-
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Fig. 3: Label distribution analysis and model accuracy.

(a) (b)

Fig. 4: (a) Original label map and (b) the new label map by
adding a semantic label wall (grey area on the left).

tialization as our baseline. The comparison of two methods is
discussed in experiment part. The translation of supplemen-
tary images is shown in Fig. 2.

3. EXPERIMENTAL STUDIES

In this section, we use PSPnet [20] as the segmentation model.
We compare the model performance before and after the aug-
mentation to verify the effectiveness of our method.

3.1. Analysis of Semantic Label Distribution

We choose Cityscapes [21] as the test dataset. This dataset
records city street scenes in 50 different cities. It defines 30
visual classes (labels) for annotation, leaving 19 classes for
evaluation. In our experiments, we just use 19 classes of se-
mantic labels. We first calculate the label distribution. For
each label class, the frequency of each label class appear-
ing in the training set and the validation set is derived, and
we call it as appearance frequency. Then we calculate the
average segmentation accuracy of top 5 ranked models on
Cityscapes website. Fig. 3 illustrates the correlation between
the label distribution and segmentation accuracy. Comparing
those classes with low appearance frequency and those have
low segmentation accuracy, we find out that two groups are
highly overlapped. In other word, it is possible to balance data
distribution and further improve segmentation accuracy by in-
creasing the appearance frequency on some specific classes.
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Fig. 5: Results comparison. Baseline: only use original
Cityscpaes dataset. +Wall: add label wall to each image.
+Multi: +Wall +Fence +Pole +Traffic light +Train. Recon-
struction: a new label map.

3.2. Ablation Study

According to the analysis of label distribution, we propose
two ways to obtain new labels: 1) Overlay a single label di-
rectly on original label maps from the dataset. 2) Totally
reconstruct using labels to form an entirely new label map.
To further study how the proportion of supplementary data
in training data will influence the performance of semantic
segmentation network, we conduct experiments with differ-
ent proportion of augmentation data.
Overlaying single label We start with adding one label on
original label maps to verify the effectiveness of our method.
We increase the appearance frequency of those classes with
low segmentation accuracy by overlaying specific single label
on original label maps that do not contain this class. Fig. 4
shows the label map before and after applying our method.
Taking the class Wall as an example, we first pick up all orig-
inal label maps without the label class Wall from training set.
We randomly choose from all wall-class label maps, and over-
lay one wall-class label on each original map. Furthermore,
we use GANs to transfer segment images into a translated im-
age. Finally, we use these supplementary images and original
images together in different proportion to train the semantic
segmentation network and calculate intersection over union
(IoU) of all the classes.

We then study the effectiveness of adding more seman-
tic labels on original label maps. We select several classes
with low segmentation accuracy, and randomly choose some
labels to add on. Single label of each class is overlaid on orig-
inal label map. Supplementary images are also generated by
GANs. In this experiment, we design one combination way
that add Wall, Fence, Pole, Traffic Light, and Train. Results
are shown in Fig. 5 and Table 1. Adding one class of la-
bel improves mean IoU 1.3% and the IoU of the added class
increases 5.0%. After adding multiple classes of labels, IoU
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(a) (b)

Fig. 6: Reconstruction of label maps: (a) A basic label map
and (b) reconstructed label map by adding various semantic
labels.

Table 1: Experimental results of our approaches.

Method Single Label Multi-Label Reconstruction

mIoU 78.65 78.82 79.41

increase significantly. Meanwhile, the mean IoU increases
further up to about 1.5%.
Reconstruction In order to balance dataset better, we pick
up segmented images from each class and combine them to-
gether to form a totally new image. We first draw a basic
label map which only contains the class label Sky, Road and
Building, which is shown in Fig. 6a. In this way we can make
sure every pixel on the new label map has its label. Otherwise
we may obtain an image with blank space labeled 0. Then
we overlay each single label map on basic labels to form a
constructed label map, as shown in Fig. 6b. We use GANs
to obtain corresponding translated images. We repeat the pre-
ceding procedure for 2 times. Two different datasets are gen-
erated and input in segmentation network, and the mean IoU
increases 2.0% and 2.1%, respectively. Since two results are
very similar, we just show one of results in Fig. 5 and Table
1.
Ratio of supplementary data To figure out how the ratio of
supplementary data and original data will influence segmen-
tation accuracy, we did further experiment as shown in Fig 7.
Notice that when the proportion of supplementary data in-

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

10% 33% 50% 67% 85% 100%Im
p

ro
v

e
d

 
m

e
a
n

 I
o
U

Ratio of augmentation data

Single class Mutiple class Reconstruction

Fig. 7: Influence of supplementary ratio in training set.

(a) (b)

Fig. 8: The result of generated an image using style transfer.
(a) the original image (b) the transferred image.

creasing, segmentation accuracy improves at first. But when
the proportion continue goes up, the accuracy goes down. Re-
sults show that the best proportion of supplementary data in
the training dataset is between 30% to 70%.

3.3. Model Comparisons and Analysis

We compare each of our data augmentation methods to tradi-
tional data augmentation methods using rotation and zooming
in and a state-of-art data augmentation method using style
transfer. The result of using style transfer is shown in Fig. 8.
Results of each method are shown in Table 2. According
to the table, all of our methods have a better performance
than traditional augmentation method, and our method out-
performs state-of-art methods when using reconstructed data
as supplementary data. Also, reconstructing separate classes
can obtain highest segmentation accuracy among all our
methods. This is because that it generates supplementary
data with more variety and better balance the dataset. The
results show the effectiveness of our method.

Table 2: Comparisons to other data augmentation models.

Method Tradition Style Transfer Reconstruction

mIoU/Improve 77.31 79.10/+1.79 79.41/+2.1

4. CONCLUSIONS

In this paper, we explored how data augmentation method can
be used to improve the performance of semantic segmenta-
tion. We proposed an augmentation method to generate sup-
plementary data by using GANs. By adding generated label
maps and images to original images as supplementary data,
we can improve the diversity of data and balance the semantic
label distribution. Comparing to other approaches in experi-
ments, we found that the best way to implement our approach
was using the Reconstruction method and setting the propor-
tion of supplementary data as around 50%. The results shown
that mean accuracy of a specific class can increase up to 5.5%
and the average segmentation accuracy can increase 2%.
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