
CAN: CONTEXTUAL AGGREGATING NETWORK FOR SEMANTIC SEGMENTATION

Dechun Cong1,2, Quan Zhou1,2,∗, Jie Cheng3, Xiaofu Wu1, Suofei Zhang4, Weihua Ou5, and Huimin Lu6

1National Engineering Research Center of Communications and Networking,
Nanjing University of Posts & Telecommunications, P.R. China.

2State Key Lab. for Novel Software Technology, Nanjing University, P.R. China.
3Huawei Technologies Co. Ltd., P.R. China.

4School of Internet of Things, Nanjing University of Posts & Telecommunications, P.R. China.
5School of Big Data and Computer Science, Guizhou Normal University, P.R. China.

6Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Japan.

ABSTRACT
Fully convolutional neural networks (FCNs) have shown

great success in dense estimation tasks. One key pillar of
such progress is mining multi-scale context cues from fea-
tures in different convolutional layers. This paper introduces
contextual aggregating network(CAN), a generic convolution-
al feature ensembling framework for semantic segmentation.
Our framework first captures multi-scale contextual clues by
concatenating multi-level feature representation, which car-
ries both coarse semantics and fine details. Then it adaptively
integrates stacked features to perform dense pixel estimation.
The proposed CAN is trainable end-to-end, and allows us to
fully investigate multi-scale context information embedded in
images. The experiments show the promising results of our
method on PASCAL VOC 2012 and Cityscapes dataset.

Index Terms— Semantic segmentation, Convolutional
features, Fully convolutional networks, Multi-scale context

1. INTRODUCTION

Semantic segmentation plays an important role in image un-
derstanding. The task here is to assign a category label for
each image pixel, which thus can be also considered as a
dense prediction problem. There are two sub-tasks for im-
age semantic segmentation: (1) classification, where a unique
semantic concept should be marked correctly to the associat-
ed object; (2) localization, where the assigned label for pixel
must be aligned to the appropriate coordinates in the segmen-
tation output. To this end, a well-designed segmentation sys-
tem should simultaneously deal with these two issues.

Recently, due to the powerful ability to abstract high-level
semantics from raw images, deep learning based approaches,
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especially the convolutional neural networks (CNNs), e.g.,
VGG-based fully convolutional neural networks (FCNs) [1,
2, 3], residual networks (RENs) [4, 5, 6], and deconvolutional
networks (DENs) [7, 8, 9], have achieved remarkable progress
for the task of semantic segmentation. However, these meth-
ods have some shortcomings when they deal with dense label-
ing tasks. In FCNs and RENs, multiple stages of spatial pool-
ing and convolution stride significantly reduce the dimension
of feature representation, thereby losing much of the finer im-
age structure. This invariance to local image transformation is
helpful for image classification [10, 11], but may be harmful
for the task of semantic segmentation [2, 3]. In order to ad-
dress this problem, DEN-based networks have been proposed
in recent years, where the up-sampling operation is employed
to produce high-resolution feature maps by learning deconvo-
lutional filters [7, 8]. These approaches, however, still suffer
from a couple of critical limitations. Firstly, since the spatial
information have been lost after down-sampling in the convo-
lution stage, the deconvolution operations are not able to re-
cover the low-level visual features, leading to the inaccurate
prediction of high-resolution segmentation outputs. Second-
ly, the entire network of DENs is nearly twice deeper than
FCNs. Training such deeper networks is a nontrivial work, in
particular with a limited number of training samples.

In order to overcome these challenges, the context embed-
ding network (CEN) and its variants are proposed to further
improve segmentation performance in recent literature [1, 2,
4, 8, 12, 13, 14, 15], which are roughly divided into four cat-
egories: skipped-connection, dilated and atrous convolution,
CRF-RNN embedding, and cascaded refinement. In the first
category, the enhanced version of FCN [1] and hyper-column
method [13] encode the context clues for high-resolution esti-
mation, where the mid-layer features are explored using skip
connections. Likewise, the DENs, e.g., U-net [12] and Seg-
net [8], attempt to construct connection between convolution-
al and deconvolutional network. In contrast, the second cate-
gory carefully designs convolutional filters to enlarge the re-
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Fig. 1. Overall architecture of the proposed CAN. We integrate convolutional features from all middle layers to abstract context
clues, producing the delineated segmentation map of an image. Please refer to text for more details. (Best viewed in color)

ceptive field of network. DeepLab [2] first applies atrous con-
volution to produce larger size feature maps. Dilated-Net [16]
appends several layers after the score map to embed the multi-
scale context, while zoom-out [17] proposes a handcrafted hi-
erarchical context features. The representative work of third
category include CRF-RNN [14] and deep structured network
(DSN) [15], where mean field inference is treated as recurrent
layers for end-to-end training of the dense conditional random
filed (CRF) and FCN network. For last category, the global
context information are captured in a cascaded manner. For
example, ParseNet [4] adds a global pooling branch to extract
context information. GCNet [3] and ShufferNet [5] careful-
ly design cascaded deconvolution network in score map and
feature map, respectively, to capture multi-scale context cues.
Although achieving promising results, the previous methods
still suffer from the following drawbacks. Firstly, objects tend
to be with different scales in image. However, the receptive
field of previous networks is not adaptive, leading to the prob-
lem that objects substantially larger or smaller than the recep-
tive field may be fragmented or incorrectly classified [2, 7, 8].
Secondly, in spite of using skip connection to investigate con-
text cues, it is hard to integrate all hand-tuned factors or fea-
tures in an appropriate way. How to conveniently find the
optimal context aggregation strategy in FCN framework still
remains an open research question in semantic segmentation.

To solve these problems, this paper presents contextual
aggregating network(CAN), a generic convolutional feature
ensembling framework for semantic segmentation. Motivat-
ed by [1, 4], our CAN integrates feature maps from multiple
convolutional layers to capture context clues. Features on the
top of CAN help the object classification, while shallow layer
features contribute to preserve the detailed object shapes and
boundaries. As shown in Fig. 1, the FCN-like architecture [1]
is employed as backbone network, and CAN is used to gener-
ate semantic score maps. Unlike pervious network, we add a
new branch, called context convolutional unit (CCU), before
each max pooling. Thereafter, these CCUs undergo a multi-
resolution fusion block to form multiple scale feature maps,

which carry both local and global context. Finally, a output
convolution is conducted to fuse different scale context fea-
tures. Our contributions are three-folds: (1) We introduce a
CAN, a generic context aggregation framework for seman-
tic segmentation. Instead of only using several skip connects
[1], we argue that features from all intermediate layers are
helpful for abstracting context clues. Through refining coarse
high-level semantics and fine low-level features, our CAN is
able to produce more accurate segmentation outputs. (2) Our
CAN can be effectively trained end-to-end, which is crucial
for dense labeling problem. Unlike the stage-wised training
scheme [1, 2, 14, 15], the simple forward architecture allows
us to train CAN in an end-to-end manner. (3) The experimen-
tal results show that our CAN outperforms most CEN-based
networks on PASCAL VOC 2012 and Cityscapes datasets.

2. OUR METHOD

The entire network of CAN is illustrated in Fig. 1. Note that
the architecture of our CAN is generic, where the backbone
network (depicted in Fig. 1 (a)) can be replaced by arbitrary
FCN-like networks, e.g., VGG-16 [1] or ResNet [5], and the
contextual integration network (depicted in Fig. 1 (b)) can be
easily modified to accept an arbitrary number of feature maps
with arbitrary resolutions and channels.
Network Overview. As shown in Fig. 1, our CAN includes
two parts: backbone and contextual integration network. D-
ifferent parts have different configurations of layers, such as
convolution, max pooling, deconvolution and concatenation.
The right column of Fig. 1 illustrates the detail structure of
backbone and contextual integration network respectively, in-
cluding layer types, kernel sizes, and the number of channels
(in bracket). Unless otherwise stated, the stride typical equals
one for convolution, and equals two for max pooling.

The most similar structure to our CAN is skip connection
version of FCN [1]. However, three important modifications
are required to adapt it to dense estimation problem. Firstly, to

1893



increase the resolution of prediction, we remove the last pool-
ing layer at the top of FCN to enlarge the receptive fields. In
this case, we expand the size of network outputs (label maps)
by 4 ×. In addition, the use of simple structure leads to less
network parameters, improving the generalized ability of the
whole network. Secondly, to fully investigate multiple scale
contextual cues, we fed the convolution layers before max
pooling, instead of pooling layers themselves, into our CCUs.
Intuitively, compared with pooling layers that have lost spa-
tial information, convolution layers preserve more abundant
visual cues, which are helpful for delineating object shapes
and boundaries. Finally, as high resolution feature maps con-
sume a large amount of GPU memory in the training process,
they limit the size of minibatch (e.g. 8), resulting in the in-
stability of the batch normalization (BN) [18] (as which need
to predict sample mean and variance from the training data
in a minibatch). We deal with this issue by simply fixing the
values of all parameters in BNs, as well as [19] does.
Context convolutional unit. The first part of contextual in-
tegration network consists of a series of adaptive convolution
that mainly capture multi-scale contextual cues. To this end,
each input path is passed sequentially through a context con-
volutional unit (CCU), which is composed by three adaptive
convolutions. To simplify our CAN structure, we adopt a fea-
ture reduction in the final convolution. The adaptive convo-
lution helps to re-scale the feature values appropriately along
different scales, which is important for the subsequent contex-
t fusion. Additionally, as shallow layer of backbone network
calculates low-level feature responses, while deeper layer ab-
stracts high-level semantics, we utilize adaptive size of filter
kernels in different CCUs. For example, as shown in Fig. 1,
the kernel size is gradually increased from 3× 3 to 7× 7.
Multi-resolution fusion and output convolution. After
passing through CCUs, all path inputs are fused into a high-
resolution feature map by the multi-resolution fusion block.
This block first applies deconvolution to up-sample all (small-
er) feature maps to the largest resolution of the inputs, and
then fuses all features maps by concatenation. Finally, the
stacked feature maps, carrying local and global context, are
mapped to a soft-max score map using an output convolution.

3. EXPERIMENTS

3.1. Implementation Details

Dataset. We evaluate our CAN on PASCAL VOC 2012 [20]
and Cityscapes [21] datasets, which are popular benchmarks
for semantic segmentation. The PASCAL dataset contains 21
object categories (20 foreground categories and one addition-
al background class). Consistently with previous studies, we
augment the extra pixel level annotations from [22], which
contains 10,582 images for training, 1,449 images for valida-
tion, and remaining 1,456 images for testing. The Cityscapes
dataset, on the other hand, focuses on street scenes segmenta-

Table 1. Experimental results on Cityscapes test set.

CRF-RNN DeepLab FCN-8s DPN DSN Ours

mIOU 62.5 63.1 65.3 66.8 71.6 71.9

Fig. 2. The visual examples of our method on Cityscapes
dataset. From top to bottom are original images, the ground
truth, and our predictions. (Best viewed in color)

tion and includes 19 object categories. Following [2], we only
employ images with fine pixel-level annotations, resulting in
2,975 training, 500 validation and 1,525 testing images. The
performance is measured in terms of mean pixel intersection-
over-union (mIOU) averaged across all classes.
Baselines. To show the advantages of our CAN, we selected
8 state-of-the-art CEN-based networks as baselines, including
FCN-8s [1], Zoom-out [17], DeepLab [2], CRF-RNN [14],
LDN [7], DPN [23], SegNet [8], and DSN [15].
Parameter settings. Our entire CAN is implemented on the
hardware platform of Intel Xeon E5-2680 server with NVIDI-
A Tesla K80 GPU, based on Caffe framework [24]. Our CAN
is trained using the stochastic gradient descent algorithm [25].
We favor a large minibatch size (set as 8) to make full use of
the GPU memory, where initial learning rate, momentum and
weight decay are set to 10−10, 0.99 and 0.0005, respectively.
Learning rate policy. Following [2, 9, 26], we employ a
“poly” learning rate policy where the initial learning rate is
multiplied by (1− iter

maxiter
)power with power = 0.9.

3.2. Evaluation Results on Pascal VOC

Tab. 2 reports the comparison results between previous meth-
ods and our CAN on Pascal VOC 2012 test set. Compared
with these CEN-based architecture, our CAN achieves best
performance with 76.6% mIOU accuracy, and best scores on
18 out of the 20 categories. Among all baselines, DSN [15]
achieves 75.3% mIOU which outperforms other state-of-the-
art baselines. The proposed CAN improves the mIOU accura-
cy by 1.3%. It is intriguing that our approach is superior to the
existing methods [2, 7] that employ CRF as post-processing
to explore long-range contextual interactions. This indicates
our CAN is able to capture wide scale context information,
allowing us to estimate more accurate object localizations.
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Table 2. Individual category results on the PASCAL VOC 2012 test set in terms of mIOU scores. The bold number indicates
the best performance among all approaches for each category.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIOU

SegNet [8] 74.5 30.6 61.4 50.8 49.8 76.2 64.3 69.7 23.8 60.8 54.7 62.0 66.4 70.2 74.1 37.5 63.7 40.6 67.8 53.0 59.1
FCN-8s [1] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

Zoom-out [17] 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 67.6
DeepLab [2] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

CRF-RNN [14] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0
LDN [7] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5
DPN [23] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1
DSN [15] 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3

Ours 91.5 55.0 88.2 69.7 75.1 93.2 86.1 87.4 40.2 82.1 60.1 84.6 84.2 85.9 86.4 63.3 84.4 59.2 82.0 73.4 76.6

Fig. 3. The visual comparison on PASCAL VOC 2012 val dataset. From top to bottom are original images, the corresponding
ground truth, segmentation outputs from FCN-8s [1], DeepLab [2], SegNet [8], LDN [7], and our CAN. (Best viewed in color)

Fig. 3 shows the visual results on the PASCAL VOC 2012
validation set. It is evident that, compared with baselines,
our CAN not only correctly classifies object with different
scales, but also produces more smooth and detailed segmen-
tation outputs with accurate object shapes and boundaries.

3.3. Evaluation Results on Cityscapes

The images in Cityscapes have a fixed resolution of 1024 ×
2048, which is too large to our network architecture. We thus
resize the resolution of images into 256× 512 before training
stage. We submit our best trained CAN to the online eval-
uation server, and the comparison detailed results are listed
in Tab. 1, which show that CAN outperforms other methods
with notable advantage. Using both local and global context
makes our CAN yield 71.9% mIOU accuracy. Several visual

examples of segmentation outputs are shown in Fig. 2.

4. CONCLUSION AND FUTURE WORK

This paper has described a CAN model, which explores multi-
scale context cues for semantic segmentation. Through con-
structing contextual integration network, our CAN provides
a more powerful representation that combines feature map-
s with different receptive fields. We evaluate our CAN on
PASCAL VOC 2012 and Cityscapes datasets. The experi-
mental results show our CAN outperforms recent CEN-based
state-of-the-art networks, and demonstrate that our approach
can produce more accurate predictions and delineated object
boundaries. The future work includes employing more pow-
erful backbone networks, such as [4, 5, 27], and extending our
CAN framework for video semantic segmentation tasks.
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