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ABSTRACT

Colorization methods using deep neural networks have become a re-
cent trend. However, most of them do not allow user inputs, or only
allow limited user inputs (only global inputs or only local inputs), to
control the output colorful images. The possible reason is that it’s
difficult to differentiate the influence of different kind of user input-
s in network training. To solve this problem, we propose a novel
deep colorization method allowing inputting global and local inputs
simultaneously or individually, which is not supported in previous
deep colorization methods. The key steps include designing a neural
network model that can appropriately combine the different input-
s, and designing an appropriate loss function that can differentiate
the influence of different inputs. Experimental results show that our
method can magnificently control the colorized results and generate
state-of-art results.

Index Terms— Interactive colorization, Deep Convolutional
Neural Network, Color Theme, Global and Local Inputs

1. INTRODUCTION

Image colorization refers to the technique that adds colors to
monochrome images. Generally speaking, colorization is a ill-
posed problem, which does not have a unique solution. To get
satisfactory colorized results, two categories of methods have been
proposed: user-guided edit propagation and data-driven automatic
colorization.

The user-guided edit propagation methods [1, 2, 3, 4, 5, 6, 7,
8, 9] require users to draw colored strokes and propagate the colors
across the image by solving a global optimization problem. These
methods can achieve impressive colorized images, but often require
a very large number of scribbles for images with complex textures.
This is because each different color region must be explicitly marked
by a different colored stroke, even regions with obvious semantic
hints, such as a blue sky or green trees, need to be specified by the
user. To address this problem, early data-driven colorization meth-
ods proposed to colorize a grayscale image automatically by learn-
ing the color hints from one or several exemplar color images which
contain similar semantics [10, 11, 12, 13, 14, 15, 16]. Unfortunate-
ly, this is a time-consuming work because it’s hard to find a suitable
exemplar image sometimes.

With the popularity of deep learning, recent data-driven col-
orization methods using deep neural networks have become a recent
trend [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Using a large number of
input (e.g. gray image) and color image pairs, the deep colorization
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methods learn a parametric mappings for fully automatic coloriza-
tion. These methods can generate plausible colorful images in most
of the time. However, since a semantic region can have multiple
choices of colors, the color and style of result image is single which
may not meet user’s expectations. For example, users may want a
green mountain in spring, but get a yellow one in autumn. They
can’t control or change the results.

The recent excellent work by Zhang et al [27] combines the ad-
vantages of user-guided and data-driven methods. It provides better
user controls by taking either global inputs or local inputs in the deep
network training. The color of the colorized image can be controlled
by a global color histogram, or a few local color points. The user-
guide deep colorization [27] can generate plausible colorized images
according to the users expectation with only a few inputs. However,
it can only allow one kind of inputs in a single model, and does not
support simultaneous global inputs and local inputs. More recently,
He et al [28] also proposed a deep colorization method to implicitly
control the results using exemplars. Deep neural networks are also
applied to scribble based color image editing [29] or sketch coloriza-
tion [30].

Movitation: We argue that supporting simultaneous global in-
puts and local inputs can provide better control on the output images.
The ideal case is that a user can control the overall color style of the
image with global color inputs, and meanwhile explicitly assign lo-
cal colors to regions of interest with local inputs. What’s more, the
form of global input should be easily set by the users, such as color
themes of variable color numbers used in colorful image enhance-
ment [31, 32]. However, supporting multiple kinds of inputs simul-
taneously in deep networks is not straightforward. It’s also difficult
to differentiate the influence of different kinds of user inputs in net-
work training. An example is shown in Figure 2, different inputs will
affect each other and lead to unnatural results, if the loss function is
not appropriately designed. To solve this problem, we propose a
novel deep colorization method for coloring grayscale images, co-
operated with loss functions that can differentiate the influence of
input data, global inputs and local inputs.

The main contributions of this paper are as follows: (1) We
propose a deep neural network based colorization method that sup-
ports global inputs and local inputs simultaneously or individually,
which is not supported in previous deep colorization methods; (2)
We enable color themes as global inputs in the context of coloriza-
tion by preparing suitable training data; (3) We propose a loss func-
tion that can differentiate the influences of the global color theme
and local inputs without causing artifacts; (4) We conduct sufficient
experiments and analysis including user studies, which verify that
our methods can better control the colorized images and generate
state-of-art results.
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Fig. 1. Our network model for colorization. Convolution layers without detailed instruction in article are using 3 × 3 kernel. The activation
function of each layer is Relu, except Conv31 which uses tanh. Batch normalization is applied in each convolution layer.

2. OUR METHOD

2.1. Problem Formulation

As shown in Figure 1, the input of our deep neural model is con-
sisted of a grayscale image X ∈ RH×W×1, a L channel gradi-
ent map XL ∈ RH×W×1 to avoid artifacts such as color bleed-
ings, a global input tensor Ug ∈ R1×K×3, and a local input tensor
Ul ∈ RH×W×3, where H , W are the height and width of the in-
put image respectively, and K is the number of colors in the color
theme. The L channel gradient map XL is generated by processing
X ∈ RH×W×1 with the Sobel operator. The output of the model
is a tensor O ∈ RH×W×2, which is the ab channel in Lab space.
We aim to train a convolution neural network (CNN), denoted by
F(X,XL, Ug, Ul; θ), to approximate the mapping between gray and
color, under the constraint of user inputs. Therefore, the colorization
problem can be formulated as

θ∗ = argmin
θ

ED [L(F(X,XL, Ug, Ul; θ), Ug, Ul, Y )], (1)

where D denotes the training data set, L denotes the loss function,
and Y ∈ RH×W×2 is ground truth image color. More details of the
loss function will be presented in Section 2.4. It should be noticed
that we train a single model which can handle global inputs, or local
inputs, or simultaneous global inputs and local inputs. Moreover, our
loss function is explicitly related to the global inputs and the local
inputs. Also, we enable color theme as our global inputs. These are
the three key points which differ our method from [27].

2.2. User inputs

Global inputs: To control the overall color style of the output,
we design the global input as the form of a color theme consisting
of K colors, since color theme is simple and straightforward (can
freely set by users), which is possibly associated with verbal de-
scription [31]. To choose the color number K, we did a user study
on 10 volunteers, which shows that the majority of people observe
3 to 5 main colors at the glance of an image, and prefer to use 3 to
5 colors for controlling colorization. So we set K randomly varies
in the interval [3,5] in the training data. To prepare training data
for the global input, we use the K-mean clustering algorithm to
find the K representative colors for each image, which are the most
frequently appearing colors in the image. The ab channels of the K
representative colors Uc

g ∈ R1×K×2 and its mask Mg ∈ R1×K×1

(a) (b) (c) (d) (e)

Fig. 2. Ablation study of loss functions. (a) Gray-scale with lo-
cal inputs and global inputs, (b) With LGT , (c) Without LGrad, (d)
Without LGlobal, (e) Final loss.

form the global input Ug = {Uc
g ,Mg} ∈ R1×K×3 by concat. An

example of color theme with 4 colors and the corresponding mask
are shown in Figure 1.
Local inputs: We prepare the training data for the local inputs colors
Uc

l ∈ RH×W×2 by randomly selecting some points from the ab
channels of every color image. If there are no samples in certain
position, the ab values are set to zeros. A one-channel mask Ml ∈
RH×W×1 is also generated to indicate the positions of local inputs.
”1” in certain position means there is an input there, while ”0” means
there are no inputs in the position. Finally, the local input is Ul =
{Uc

l ,Ml} ∈ RH×W×3.

2.3. NetWork model

As shown in Figure 1, our network model uses the popular U-Net
structure [33, 25, 27] as a basic model, with extensions to accept
multiple kinds of inputs. It is mainly composed of 31 layers, divided
to four parts: the feature extraction module(blue), the global input
module(pink), the dilated module (yellow) and the reconstruction
module (purple).
Feature extraction module: The feature extraction module corre-
sponds to the blue part in Figure 1. It inputs a grayscale image
X ∈ RH×W×1, a L channel gradient map XL ∈ RH×W×1 and
a local input Ul ∈ RH×W×3. Initially, X , XL and Ul are respec-
tively convolved to a tensor of size H × W × 64. The L channel
gradient map is helpful in guiding the network to avoid artifacts and
bleeding of the backgrounds, we show examples in Figure 4. These
three tensors are merged to a single tensor of size H ×W × 64 by
element-wise summation. The merged tensor is then fed to following
convolution blocks.

1888



In convolution block 2 to 14, all the convolution kernels are 3×3
and the stride is 1 except in the downsampling layers, where the
kernel size is 1×1 and the stride is 2. We use depth-wise convolution
in downsampling layers to halve the tensor sizes of the input, and
double tensor dimensions with convolution. In conv14, the tensor
is H

8
× W

8
× 512. We use depth-wise convolution instead of using

max-pooling layers to reduce the tensor sizes because it can use less
parameters to achieve downsampling.
Global input module: The global input module, the pink part in
Figure 1, is one of the characteristics of our method. It takes in
the global inputs Ug ∈ R1×K×3, which consists of the ab channels
of the color theme Uc

g and the corresponding mask Mg . To unify
its size with the size of feature extraction module, the global inputs
are reshaped to a tensor of size 1 × 1 × 512 and processed by 4
convolution layers with 1×1 kernel size. Then, we add this tensor to
the output of feature extraction module by element-wise summation
as the input of the dilated module.
Dilated module: The dilated module, shown with yellow color in
Figure 1, is an important step to fuse the user inputs and extracted
features. Dilated convolution is used to increase the receptive field of
filters without increasing the number of parameters. In this module,
there are six dilated convolution layers to process input tensor. The
input and the output feature tensor size of this module is H

8
× W

8
×

512.
Reconstruction module: The feature tensors are then processed by
a set of convolution layers and deconvolution layers for ab channels
reconstruction, shown with purple color in Figure 1. Deconvolution
layers use kernels of 4 × 4 with stride 2, which doubles the size
of the tensor and reduce the channels by half. Conv31 is processed
by a convolution with kernel size of 1 × 1, and output a tensor of
size H × W × 2, which combines the input grayscale image X ∈
RH×W×1 to generate the final color image O ∈ RH×W×3.

2.4. Loss function

Designing an appropriate loss function is the key part of our work.
In [27], the Huber loss between the output image and the ground
truth is shown to generate plausible images for either local inputs or
global inputs. The Huber loss is given by

LH(O, Y ) =

{
1
2
(O − Y )2 for |O − Y | ≤ δ

δ |O − Y | − 1
2
δ2 otherwise,

(2)

where δ is the parameter of the Huber loss, which is set to 1. How-
ever, it is not enough for simultaneous global and local inputs, the
influence of the global color theme is not clear (as shown the Fig-
ure 2(b)). Also, only using Huber loss is more like to cause artifact-
s(the sky in Figure 2(b)). To this end, we design our loss function L
as

L(F(X,XL, Ug, Ul; θ), Ug, Ul, Y )

= α1 ∗ LGT + α2 ∗ LGlobal + α3 ∗ LGrad.
(3)

where LGT is the Hubber loss of the output image and the ground
truth; LGlobal is the Hubber loss of the output image and the K-
color map by decoding the ground truth with its K representative
colors; LGrad is the mean squared error of the Sobel gradient of the
output image and the ground truth; α1, α2, α3 are three parameter-
s to weight the influence of three parts. We empirically set α1 =
0.9, α2 = 0.1, α3 = 10 in all our experiments. As shown in Fig-
ure 2(e), the defined loss not only can remove the color overflow, but
also can remove the strange color on background and promote colors
in color theme to better reflect in the output.

(a) (b)

Fig. 3. Average PSNRs of testing images with different loss func-
tions and methods. Our method uses both global and local inputs.

(a) local inputs (b) (c) without XL (d) with XL

Fig. 4. Effect of the L channel gradient map. (a) Grayscale images
with local inputs. (b) Global inputs. (c) Results without gradient
maps. (d) Results with gradient maps.

3. EXPERIMENT

We implemented our model on a NIVIDIA GTX1080Ti GPU with
TensorFlow. We randomly choose 1000 images from ImageNet
dataset as testing set, and use the remaining images in ImageNet
dataset plus 150,000 outdoor images in Places to train our model.
The number of local points is uniformly distributed in [10,50]. We
train the model using a batch size of 16 for 300,000 iterations, using
about five days. In the training, 90% training data are provided with
simultaneous global inputs and local inputs, 5% training data are
provided with only global inputs, and the remaining 5% training
data are provided with only local inputs. The coloration time for
a 256 × 256 and a 512 × 512 image is about 0.0230 seconds and
0.0748 seconds, respectively. Therefore, our colorization method
can work in real-time for normal size images.

3.1. Ablation Study of Loss Functions

We conduct a visual comparison (Figure 2) and a numerical com-
parison (Figure 3(a)) for different combinations of loss function-
s. Removing either component of our loss function causes artifacts
(”dirty” colors in the background of first row of Figure 2(b)(c))), or
degrades the influence of the color theme(Figure 2(d)). For the nu-
merical comparison, the PSNRs of the final loss function are higher
than other loss functions, but are slightly lower than the one without
LGlobal when the number of local points is larger than 20. This is be-
cause our final loss function includes the global color theme loss, the
difference between the output and the K-color map, which slightly
drives our output further from the ground truth.

3.2. Effect of L channel gradient map

The inputs of our method include a L channel gradient map XL,
which can provide the network with gradient information of the

1889



(a)Input1
(b)O

ur
(c)[27]

(d)Input2
(e)[27]

Fig. 5. Comparison with the state-of-art [27]. (a) Grayscale images
and user inputs. (b) Our results. (c) [27]’s results. (d) An other input
for [27] by inserting the colors in our color theme to local regions.
(e) [27]’s results with input in (d).

grayscale image to make the color diffusion smoother, as shown
in Figure 4. Results in column (c) without the gradient map show
abnormal colors. Obviously, the results with the gradient map can
improve the quality of colorizaiton as show column (d). We also
evaluate the PSNRs of the results with and without XL, as shown
in Figure 3(b). The results without XL (the purple line) have much
lower PSNRs compared to those with XL (the blue line).

3.3. Comparison to State-of-art

Visual: We compare our method with the state-of-art user guide
method [27] in Figure 5. Our method uses global inputs and local
inputs simultaneously, while [27] uses local inputs only. Note that,
since our method takes more inputs (global color theme) than [27],
we prepare another input (row (d)) for [27] by inserting the colors in
our color theme to local regions, for a more fair comparison. In this
case, the color numbers of input in row (d) are equal to our simul-
taneous global inputs plus the local inputs. As shown in Figure 5,
[27]’s method is more likely to cause color overflows (the Butterfly
image in Row (c)(e)), or fail in diffusing the colors consistently in
to the whole image (the Bird image in Row (e), the Mountain image
in Row (e), and the Grass image in Row (c)(e)). This phenomenon
implies that more local color points is required to generate better
results. In contrast, our method generates plausible results without
artifacts such as color overflows and color inconsistences.
Numerical: The numerical comparison of our method and [27] is
shown in Figure 3(b). In this comparison, the color themes and local
inputs are randomly extracted from the ground truth of testing im-
ages, as done in the training phase. Our method is better than the
classical optimization method [1], but a little worse than [27]. This
is due to the global input loss, which makes the output a little further
from the ground truth. Note that, this is not a big problem, since the
purpose of colorization is not to recover the original image, which

(a)

(b)

Fig. 6. More results. (a)An example using three themes. (b) Some
examples generated by users in user study.

may not exist.
User stuty: We further conduct a user study to compare our method
and [27]. We randomly selected 20 results of both methods from
the testing set. 20 volunteers are invited to observed each pair of
images for ten seconds and to choose one image which looks more
natural or real. Results show that 61% of our results are chosen to
be better. Among the volunteers, 90% of volunteers think our results
are better (choose more than 10 our results). The volunteers are
also invited to experience our method with two kinds of inputs and
the method in [27] with local inputs (both implemented with similar
GUIs). Results show that 70% of the volunteers think our interactive
mode is more convenient and efficient.

Then, we interviewed 5 volunteers about the feelings of using
the two softwares. Three people said that global inputs are very
quick and easy to use, and it can colorize the background very well.
For unsatisfactory regions, they can use local inputs to adjust. Us-
ing the combination of two inputs, they can quickly colorize a de-
sired image. One volunteer said that he personally prefers to adjust
each detail directly with local inputs. Another volunteer said that
both methods can produce expected results. Therefore, our method
is what users expect, and it does improve colorizing efficiency.

3.4. Evaluation of Global Inputs

We also evaluate the influence of the global color themes. Fig-
ure 6(a) show an example using different color themes. As we can
see, the color theme faithfully control the colorized results. We al-
so make a user study to evaluate the impact of color themes. We
randomly selected 20 gray images from the test set. To colorized
these images, we invite 5 volunteers, each of which is required to
colorize 4 images by a color theme within one minute. Some re-
sults are shown in Figure 6(b). The results are organized into a test
questionnaire where each image is provided four options. One op-
tion is the color theme used for colorization, and the other three are
interference items. Another 20 volunteers are required to choose the
correct theme for each image within 15 seconds. Results show that
the average correct rate has reached 85%. The highest correct rate is
95%, and the lowest correct rate is 65%. The volunteers interviewed
also said that the color themes are naturally reflected in the images.

4. CONCLUSION

In this paper, we propose an CNN based interactive colorizing meth-
ods supporting either global inputs or local inputs or both inputs si-
multaneously. By designing a suitable loss function, our model can
differentiate the impact of different inputs. Experiments and user
studies show that users can better control the plausible images with-
out artifacts using our method. In the future, we would like to extend
our method to other type of images or videos.
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