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ABSTRACT

Edge-preserving smoothing filter smoothes the textures while it pre-
serves the information of sharp edges. In image processing, this filter
is used as a fundamental process of many applications. In this pa-
per, we propose a new approach for edge-preserving smoothing filter.
Our method uses 2D filter to smooth images and we apply indicator
function to restrict the range of filtered pixels for edge-preserving.
To define the indicator function, we recalculate the distance between
each pixel by using edge information. The nearby pixels in the new
domain are used for smoothing. Since our method constrains the
pixels used for filtering, its implementation is quite fast. We demon-
strate the usefulness of our new edge-preserving smoothing method
for some applications.

Index Terms — edge-preserving smoothing, indicator function,
denoising, contents matching

1. INTRODUCTION

Image filtering is used in many applications in computer vision and
computer graphics. In particular, edge-preserving smoothing filter is
used in fundamental process of many kinds of applications in image
processing, including clip-art JPEG artifact removal [1, 2], detail
manipulation [3,4], guided denoising [5,6], colorization [7,8], guided
upsampling [8,9], tone mapping [3,4,10], depth-of-field effect [11],
haze removal [12], and stylization [11]. Edge-preserving smoothing
filter smoothes the image but when sharp edge appears, it stops
smoothing. It means that the texture region is smoothed but the sharp
edge will be preserved. The most popular edge-preserving smoothing
filter is bilateral filter [13]. This method computes only L2 norm in
both spacial and range domain. Therefore, even if there are thin edges
in image like in Fig. 3, bilateral filter might refer the pixels over the
valley. The cross reference over sharp edges might deteriorate the
performance of smoothing. To improve the quality of smoothing and
edge-preserving, various methods have been proposed: weighted least
squares [3], edge-avoiding wavelets [14], domain transform [11],
guided filter [5], L0 gradient minimization [10] and L0 gradient
projection [2]. The local filtering method can process the image
rapidly but the smoothing effect is not enough. On the other hand,
non-local method like L0 gradient projection [2] can smooth image
sufficiently but the implementation time is long.

We propose a new method for performing edge-preserving
smoothing filter to images. Our approach defines the indicator func-
tion which indicates the pixels used for smoothing. It is defined in
2D and we use edge information to gather the pixels which belong to
the same region. Because the indicator function restricts the region
of smoothing, our filter will not smooth across sharp edges. That
feature gives us flexibility of which type to use for smoothing such
as moving average, gaussian smoothing filter, etc.

Our approach has two remarkable features. First, since our
method uses 2D filter, the artifact which appears when the 1D fil-
ter [11] is applied does not appear. In addition, the output image
is rotationally invariant and this will be an advantage when the
edge-preserving smoothing filter is used for content matching in a
database. Second, since the indicator function restricts the spatial
range of pixels in the filtering, the computational cost is low. Our
edge-preserving smoothing filter can smooth the image rapidly due
to the constraint of range and the simplicity of our algorithm. This
result is remarked in section 4.

We demonstrate the application of our edge-preserving smooth-
ing filter in section 5, including clip-art JPEG artifact removal.

2. SUPPORTING METHODS

2.1. Bilateral Filter (BF)

A bilateral filter [13] is a most popular edge-preserving smoothing
filter. It works by weight averaging the value of neighbor pixels in
space and range dimension. If the spatial or range distance is long,
the weighting factor will be small. In contrast, if the similarity of
the pixels is high, the weighting factor will be large. Therefore, the
bilateral filtering weight wxypq is given by

wxypq = 1
Kxy

exp
(

−p2 + q2

σ2
s

)
exp

(
− (Ixy − Ix+p,y+q)2

σ2
r

)
(1)

where (x, y) are the coordinates of the target pixel, (p, q) are the
offsets in the kernel, Ixy is the pixel value and Kxy is a normalizing
parameter. σs and σr are parameters to decide the sensitivity in
the spacial and range dimension. The filtered image value Jxy is
computed by

Jxy =
∑

p,q∈Ω

wxypqIx+p,y+q. (2)

Since this method have to compute all weighting factor in the ker-
nel, the computational cost is high. To speed up the process, many
approaches have been proposed [15–17] but in most cases they need
quantization, downsampling or approximation.

2.2. Domain Transform (DT)

Domain Transform [11] is a fast method for the edge-preserving
image processing. To speed up the process, it applies domain trans-
form to the image in advance. The smoothing amount in spatial and
range dimension are determined by parameter σs and σr , and the
transformed domain is given by

tx =
x∑

i=1

|1 + σs

σr

(
Ii − Ii−1

)
|. (3)
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To apply filter in the transformed domain, three kinds of methods were
proposed: Normalized Convolution, Interpolated Convolution and
Recursive Filtering. In particular, Normalized Convolution smoothes
image strongly since it simply averages the values of the nearby pixels
in the transformed domain. The equation of Normalized Convolution
is:

Jx = (1/Kx)
∑

p∈D(Ω)

Ix+pH(tx, tx+p)

H(tx, tx+p) =
{

1 if |tx − tx+p| ≤
√

3σs

0 otherwise
. (4)

Since this method uses 1D-domain transform, it can only apply 1D
filter to the images. Therefore, it applies 1D filter to the input image
(2D signal) for several times from the different direction. It may cause
artifacts along the direction which the 1D filter is applied and also
the output image is not rotationally invariant.

3. PROPOSED METHOD

We define a new 2D filter kernel including smoothing kernel and
indicator function kernel. Since the indicator function constrains the
range of smoothing, it improves the edge-preserving effect and speeds
up the implementation time. Before computing the indicator function
kernel, we compute the reconstructed distance of pixels by integrating
edge information. The indicator function is defined by judging if the
reconstructed distance of the pixels is smaller than parameter σi.

3.1. Indicator function

When the edge-preserving smoothing is performed, it is important to
smooth the pixels which belong to the same region. However, classic
smoothing filter (e.g. moving average, gaussian smoothing filter or
bilateral filter [13]) might smooth across different regions because
it only refer to the space or intensity information. This characteris-
tic deteriorates the performance of smoothing. Therefore, we define
Hxypq as an indicator function and it determines which pixels belong
to the same region in the image. From the above, our filtering weight
wxypq and Hxypq are expressed as:

wxypq = 1
Kxy

SxypqHxypq (5)

Hxypq =
{

1 if rxypq ≤ σi

0 otherwise
, (6)

where Sxypq is a smoothing kernel and rxypq is a distance of two
pixels in the reconstructed domain, which is explained in Section
3.2. σi is a user-given parameter which determines the region of
smoothing. When we use simple moving average for the smoothing
kernel, the maximum smoothing effect is obtained. In that case, our
filtering weight can be expressed as

wSMA
xypq = 1

Kxymax
Hxypq. (7)

Since the computational cost is low, we mainly use (7) for the exper-
iments.

3.2. Reconstructed domain

Our indicator function judges whether pixels are in the same region
or not by the information of edges. When a sharp edge exists between

(a) The edge (colored in black) is
in the filter kernel and Lxypq1 and
Lxypq2 are visualized.
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(b) Edge integration.

Fig. 1. The visualized image of computing reconstructed domain.

two pixels, the pixels should be classified into different regions. Thus,
we recalculate the distance of each pixels by integrating the inten-
sity of edge information. We call this new domain as Reconstructed
domain. In reconstructed domain, the distance of two pixels should
be larger if more edges exist between them. The similar approach
was proposed in DT [11] but this method was only available in 1D
signal. Since there are no solution for 2D signals to define the accu-
rate domain transform [11], we define the reconstructed domain by
integrating the information of edges in a limited situation.

Considering the case of 2D signal, there are many routes for
integrating edge information and each of them may have different
values. In order to reduce the computational cost, only two routes
are computed in our method. The example of two routes Lxypq1 and
Lxypq2 are shown in Fig. 1(a). When (p, q) are both positive, are
given by following expression:

Npq = {N0, N1, · · · , Np, Np+1, · · · , Nk}
= {Ix,y, Ix+1,y, · · · , Ix+p,y, Ix+p,y+1, · · · , Ix+p,y+q}

Lxypq1 =
k∑

l=1

|Nl − Nl−1|

Mpq = {M0, M1, · · · , Mq, Mq+1, · · · , Mk}
= {Ix,y, Ix,y+1, · · · , Ix,y+q, Ix+1,y+q, · · · , Ix+p,y+q}

Lxypq2 =
k∑

l=1

|Ml − Ml−1|. (8)

N and M are the sorted pixels on the each route and k = |p| +
|q| is the number of pixels in the each route. When (p, q) are not
positive, the sign of (8) must be appropriately inverted. This process
is visualized in Fig. 1(b). DT use the information of space domain in
order to define the accurate domain transform but in (8), the space
information is not integrated since it is not important for our method.

To calculate (8) in every kernel will cost high computational
resource. Thus, our method calculates 1D edge integrated values in
advance. The integration in (8) can be calculated easily by using this
value. The 1D edge integrated values Lxy1 and Lxy2 are expressed
as:

Lxy1 =
x∑

i=1

|Iiy − Ii−1,y|

Lxy2 =
y∑

i=1

|Ixi − Ix,i−1|.

(9)
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(a) Input (b) 1 iteration. (c) 2 iterations. (d) 3 iterations. (e) 15 iterations.

Fig. 2. The comparison between the number of iterations. Eq. (7) is used for the process, σi = 0.45 and the filter size is 9 × 9. The result of 3 iterations is quite
similar to 15 iterations, during the results of 1 and 2 iterations do not have enough smoothing effect.

(a) Input signal. (b) Gaussian filter. (c) Bilateral filter [13]. (d) DT [11]+ gaussian filter. (e) Proposed + gaussian filter.

Fig. 3. Visualization of the filter weight (yellow lines) and the convolution area (blue regions) when a sharp edge exists in the image.

Applying (9) to (8), the two routes are given by:

Lxypq1 = |Lx+p,y1 − Lxy1| + |Lx+p,y+q,2 − Lx+p,y2|
Lxypq2 = |Lx,y+q,2 − Lxy2| + |Lx+p,y+q,1 − Lx,y+q,1|.

(10)

Because classifying as many pixels as possible in the same region
is important for smoothing, we define the smaller value of Lxypq1
and Lxypq2 as the distance of two pixels in the reconstructed domain.
Therefore, the distance rxypq of the two pixels in the reconstructed
domain is defined as

rxypq = min(Lxypq1, Lxypq2). (11)

We revealed experimentally that using two routes for calculating
distance in reconstructed domain shows a good tradeoff between
edge-preserving quality and the computational cost.

Fig. 3 shows the 1D signal and the weighting factor of the con-
ventional and proposed filter kernel. We can see that our proposed
filter constrain the region of smoothing and it leads to the efficient
edge-preserving smoothing.

3.3. Parameters analysis

Since we define the smoothing term and the indicator function sepa-
rately, our filter can smooth images flexibly. When σi is large enough,
the indicator function always take the value of 1. Thus, our filter acts
like conventional smoothing methods: simple moving average filter,
gaussian filter, and the bilateral filter. In contrast, when σi is set to
an appropriate value, the filter acts as an edge-preserving filter. In
this case, the method chosen for the smoothing kernel determines
the amount of smoothing. We mainly use (7) as our filter since it
can obtain the best smoothing effect. The difference occurred by the
choice of σi is shown in Fig. 4. When σi is set to a small value, the
smoothing effect is limited and some texture remains. In contrast,
when σi is set to a large value, our filter smoothes image over edges.
The suitable parameter of σi depends on the applications.

Since indicator function takes the sum of the pixel differences,
the further pixels tend to be classified to a different region. In order

(a) Input image (b) σi = 0.25

(c) σi = 0.50 (d) σi = 1.0

Fig. 4. The comparison of the results when various σi is selected. Equation
(7) is used for the process and the filter size is 9 × 9. Three iterations are
performed.

to overcome this problem, we apply our filter to the image for sev-
eral times. When the number of iteration increases, more smoothed
image is outputted but when we use the same value of σi during the
iterations, too much smoothing effect is obtained. Experimentally we
decide to reduce the value of σi by half through iterations.

σit = (0.5(t−1))σi (12)

where σit is the parameter used in t-th iteration. The result image
of t-th iteration is used for the input of (t + 1)-th iteration. In most
cases, when the number of iterations gets larger than 3, the PSNR
[18] between the results of subsequent iterations get larger than 50.
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Table 1: The comparison of L0 error rate between the output images processed
by 90 degrees rotated input and normal input. The result is expressed in
percent. The computational time for 512 × 512 RGB image is also shown
in the table. The comparison methods are L0 Gradient Minimization (λ =
0.0015) [10], L0 Gradient Projection (α = 0.08N ,γ = 3,η = 0.95) [2],
Domain Transform (σs = 40, σr = 0.4) [11], Fast Global Image Smoothing
(λ = 50, σ = 0.1) [8] and our proposed method (filter size:9×9, σi = 0.5).

Dataset name L0GM L0GP DT FGS Proposed
BSDS300 [19] 0.29 0.92 0.25 0.25 0.00

COCO [20] 0.31 0.42 0.27 0.26 0.00
Average 0.30 0.67 0.26 0.26 0.00

time MATLAB 1.46s 102s 2.89s 1.70 s
C++ 0.04s 0.15s 0.07 s

Therefore, we decide to perform 3 iterations for our method. The
results with different numbers of iterations are shown in Fig. 2.

4. EXPERIMENTAL RESULTS

In this section, we show the smoothed image processed by our method
and the comparison methods. The comparison methods are Domain
Transform (DT) [11], L0 Gradient Projection (L0GP) [2] and bilateral
filter [13].

Analyzing the results of DT and L0GP in Fig. 5, the thin gray
edge is smoothed . In contrast, it is preserved in our result. It is because
our 2D indicator function strictly restricts the region of smoothing.
We can see the effect of our indicator function by comparing the
results shown in Fig. 5(e) and Fig. 5(f). Fig. 5(e) is the output of
bilateral filter and Fig. 5(f) is the output of proposed method which
uses bilateral filter as the smoothing kernel. Bilateral filter smoothes
over edges as shown in Fig. 5(e) but Fig. 5(f) shows the effective
smoothing result which does not smoothes over edges.

Our method can process 1M pixel RGB image in 0.65 seconds
on dual core CPU@2.2GHz with our C++ implementation. Eq. (7)
is used the computation, filter size is set to 9 and the number of
iterations are 3. Since our method is classified to local filter, parallel
coding is effective for decreasing the execution time.

5. APPLICATIONS

Since edge-preserving smoothing filter smooths only texture region,
it is mainly used to separate the texture from the image. This fea-
ture is used in many applications. For example, detail manipula-
tion is performed by adding enhanced texture information to the
smoothed image. Guided denoising, colorization, guided upsam-
pling, tone mapping, depth-of-field effect, haze removal, stylization
and clip-art JPEG artifact removal are also available as applications.
The example of clip-art JPEG artifact removal is shown in Fig. 6.

Since we define the indicator function in 2D space, our method
is rotationally invariant. The L0 error rate between the output images
processed by 90 degrees rotated input and normal input are shown
in Table 1. The execution time is also shown in Table 1. When two
images are completely same, the error rate will be 0. The result in
Table 1 shows that our method is rotationally invariant. This feature
is available in contents matching in a database system.

6. CONCLUSION

In this paper, we propose a new approach for the edge-preserving
smoothing. We define the 2D indicator function to restrict the pixels

(a) Input image. (b) DT (σs = 40,σr = 0.4)

(c) L0GP (α = 0.25N ) (d) Proposed method. Eq. (7)
is used. (σi = 0.35)

(e) BF (σr = 0.07 σs =
20) (f) Proposed method. BF is

used as smoothing kernel in
(6). (σi = 0.35, σr = 0.07,
σs = 20)

Fig. 5. Image smoothing results comparison with DT [11], L0GP [2] and
BF [13]. The filter size of Proposed method are set to 9 × 9. 3 iterations are
performed in all methods instead of L0GP.

(a) JPEG compressed image. (b) Output image filtered with
our method (σi = 0.40).

Fig. 6. The result of denoising applied on JPEG image.

which are used for smoothing. This function is defined by compar-
ing the value of the integration of edge information and it is easily
computed by using 1D integration. Because the 1D edge integration
can be computed beforehand, the computational cost is low and also
parallel implementation is available. Due to defining the indicator
function in 2D space, the output of our filter is rotationally invari-
ant. This feature is desirable in case of using our filter in content
matching.
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