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ABSTRACT

This paper proposes multiscale structure-tensor total variation
(MSTV) for image recovery. Gradient vectors in local patches
usually have similar directions, and thus each local gradient matrix
(the set of gradient vectors) tends to be low rank. STV introduces
this property by calculating the sum of nuclear norms from all the lo-
cal gradient matrices over the input image. By STV regularization,
fine textures are recovered efficiently. However, since STV only
considers differences of vertically and horizontally adjacent pixels,
if neighboring samples are not reliable due to severe degradation, a
latent image cannot be recovered efficiently. In this work, we assume
that, for any two target pixels in a local patch, two vectors consisting
of multiple differences not only between each target and adjacent
pixels but also each target and further distant pixels exhibit a similar
direction. According to this assumption, our MSTV firstly applies
wavelet-based multiscale decomposition to vertical/horizontal gra-
dient vectors and then evaluates the sum of nuclear norms of all
the local wavelet coefficients. Experimental results show that the
MSTV improves both numerical reconstruction error and subjective
visual quality, compared with the conventional STV.

Index Terms— Convex optimization, image recovery, structure
tensor total variation, nuclear norm, wavelet transform

1. INTRODUCTION

Image recovery (e.g., denoising, deblurring, missing pixel recovery,
super-resolution, and so on) is a crucial task for accurate imaging in
situations where it is difficult to acquire desired images. Convex op-
timization plays an essential role in image recovery and has been ex-
tensively studied [1, 2, 3, 4]. To obtain high quality restored images
in each task, we should design a suitable convex prior which math-
ematically characterizes desired properties of ideal images, such as
smoothness, patterns, and sparsity in some transformed domain. For
example, total variation (TV) [5, 6, 7, 8, 9] and its extensions of
higher-order, semi-local, and non-local versions [10, 11, 12, 13], lo-
cal linearity of color components [14, 15], and sparse representation
by (local/non-local) frame/dictionary [16, 17] have been proposed.

One of the efficient convex priors for image recovery is structure-
tensor total variation (STV) [11] and focused in this paper. Since
STV utilizes only semilocal similarity of local gradient vectors, it
does not suffer from 1) the staircasing effect problem of TV, and
2) chicken-and-egg self-similarity evaluation as in nonlocal ap-
proaches. STV is defined by structure tensor [18, 19] applied to
many applications in the field of computer vision [20]. After the
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original STV was proposed, several extensions for multichannel im-
ages (e.g., color and hyper-spectral ones) [21, 22, 23] were studied.
In natural images, it is often the case that gradient vectors in each
local patch tend to have similar directions (see the dashed box “1:
STV” in Fig. 1). According to this property, STV calculates the nu-
clear norm of the patch-based Jacobian matrix [11] (the set of local
gradient vectors) for each local patch, then sums them up over the
image. By integrating STV into the cost function and minimizing it,
the low-rankness of local gradients can be promoted, and thus fine
textures can be recovered efficiently.

In this work, we extend the conventional STV to multiscale STV
(MSTV)1. It is often the case that, in local periodic-pattern texture
regions, for given two target pixels, two vectors consisting of mul-
tiple differences between not only each target and (horizontally and
vertically) adjacent pixels but also each target and further distant pix-
els have a similar direction (see the dashed box “2: MSTV” in Fig.
1). Our MSTV consists of patch-based multiscale Jacobian matrices
that includes multiscale difference components related to the pixel in
the local patch, and thus more robust measure of image variation can
be designed (particularly for periodic-texture regions).

To construct patch-based multiscale Jacobian matrices, we fur-
ther decompose horizontal and vertical differences into multiple
scales by using an overcomplete Parseval tight frame (Haar wavelet
transform), then take the sum of the nuclear norms of all the patch-
based multiscale Jacobian matrices. Furthermore, we introduce a
subband-wise weighting operation into MSTV, which is termed as
weighted MSTV (WMSTV).

The rest of this paper is organized as follows. Sec. 2 reviews
STV and primal-dual splitting (PDS) [24, 25, 26], which is a solver
of a class of convex optimization used in this paper. Then, MSTV
and WMSTV are explained in Sec. 3. The proposed method is eval-
uated in the experiments of image denoising and compressed image
sensing in Sec. 4. Finally, this paper is concluded in Sec. 5.

1.1. Notations

Let N, R, and R+ be the sets of positive integers, real numbers,
nonnegative real numbers, respectively. Boldfaced large and small
letters are matrices and vectors, respectively. A set of Nr [row] and
Nc [column] (Nr, Nc ∈ N) real matrices is described as RNr×Nc .
The matrix I ∈ RN×N is reserved for the identity matrix. The trans-
pose of a matrix A ∈ RNc×Nr is A⊤ ∈ RNr×Nc . A block di-
agonal matrix of {Ai}N−1

i=0 is denoted as diag(A0, . . . ,AN−1) ∈
R

∑
Mi×

∑
Ni (Ai ∈ RMi×Ni) and, if all the matrices are scalar, a

block diagonal matrix becomes a diagonal matrix. The element-wise
multiplication is ⊙.

1For simple discussion, we only consider grayscale images in this paper.
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Fig. 1: Similarity of gradient/multiscale difference vectors of STV
and MSTV.
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Fig. 2: Construction of patch-based Jacobian matrix J
(n)
u,κ.

2. PRELIMINARIES

2.1. Structure tensor total variation

Since the structure tensor captures first-order information around
a local region, it carries more flexible and robust measures of
image variation than TV as shown in the following. Let u =[
u⊤
1 , . . . ,u

⊤
M

]⊤ ∈ RMN be a vectorized image consisting of
M channels u1, ...,uM ∈ RN (N is the number of pixels), e.g.,
M = 1 and M = 3 in the case of grayscale and RGB images.
We denote pixel indices assigned in the (vertical) raster scan order
by n ∈ N := {1, ..., N}, and the set of the pixel indices in the
local patch at the pixel location n ∈ N by In. In addition, for
given u ∈ RN , [u]κIn

:= PIn(κ ⊙ u) is the sub-vector collecting
element-wise weighted pixels in the n-th local patch In (κ ∈ R|I|

+

is a weight vector and PIn ∈ R|In|×N is the extracting matrix).
According to these notations, the structure tensor of the n-th local
patch of u ∈ RMN is defined as [11]:

S(n)
u,κ := J(n)⊤

u,κ J(n)
u,κ ∈ R2×2, (1)

J(n)
u,κ :=

[
[Dvu1]

κ⊤
In

· · · [DvuM ]κ⊤
In

[Dhu1]
κ⊤
In

· · · [DhuM ]κ⊤
In

]⊤

, (2)

where Dv, Dh ∈ RN×N are vertical and horizontal difference ma-
trices. Finally, the structure-tensor total variation (STV) of u is de-
fined as:

STV(u) :=

N∑
n=1

∥J(n)
u,κ∥∗, (3)

where ∥ · ∥∗ is the nuclear norm, i.e., the sum of all the singular
values of (·).

2.2. Primal-dual splitting method

Consider the following convex optimization problem to find

x⋆ ∈ argmin
x∈RN

g(x) + h(Lx), (4)

where g ∈ Γ0(RN ), h ∈ Γ0(RM )2, and L ∈ RM×N , respectively.
Then the primal-dual splitting algorithm (PDS) [24, 25, 26] for solv-
ing (4) is given as follows:{

x(n+1) = proxγ1g
[x(n) − γ1L

⊤z(n)]

z(n+1) = proxγ2h∗ [z(n) + γ2L(2x
(n+1) − x(n))]

, (5)

where prox denotes the proximal operator3 [27] and h∗ is the conju-
gate function4 of h [27].

3. MULTISCALE STRUCTURE-TENSOR TOTAL
VARIATION

This section proposes MSTV as an extension of the STV. As indi-
cated in Sec. 2.1, STV only considers differences between vertically
and horizontally neighboring pixels with respect to a target pixel.
Hence, if the adjacent pixels are not accurate due to severe degrada-
tion, a latent image might not be sufficiently recovered. Therefore,
we propose more robust STV against degradation by assuming that
multiple scale differences obtained for each pixel in a local pattern
texture region form a low rank matrix. The detail formulation is ex-
plained in the following subsection.

3.1. MSTV based on shift-invariant Haar wavelet transform

In order to extend STV to MSTV, we introduce separable two-
dimensional shift-invariant Haar wavelet transform (2DHT)5 be-
cause of its computational efficiency and Parseval tight frame prop-
erty. Specifically, we apply 2DHT to vertical differences and hori-
zontal differences, and create a multiscale difference vector (Fig. 3).
Here, recall that j-th level 1DHT is defined as:{

ℓj+1,n = 1
2
(ℓj,n + ℓj,n+2j−1)

dj+1,n = 1
2
(ℓj,n − ℓj,n+2j−1)

, (6)

where ℓj,n be the j-th lowpass subband coefficients. Thus, apply-
ing HT to the horizontal and gradient vectors brings us multiscale
difference information of images.

Let W =
[
W⊤

J,LL W⊤
J . . . W⊤

1

]⊤ ∈ R(3J+1)N×N be the J-

level 2DHT, where WJ,LL and Wj =
[
W⊤

j,LH W⊤
j,LH W⊤

j,HH

]⊤
are the transform matrices computing the J-th lowpass subband co-
efficients and the j-th highpass subband ones, respectively (note that
W⊤W = I). For a given input grayscale image u ∈ RN (N is the

2The set of proper lower semicontinuous convex functions [27] on RN

3The proximal operator is defined for a function f ∈ Γ0(RN ) and an
index γ ∈ (0,∞) by proxγf (x) := argmin

y∈RN

f(y) + 1
2γ

∥x− y∥22.

4For ∀f ∈ Γ0(Rp), the conjugate function f∗ of f is defined as:
f∗(ξ) = supx∈RN ⟨x, ξ⟩ − f(x), and the proximity operator of the conju-

gate function is defined as: proxγf∗ (x) = x− γprox 1
γ
f

(
1
γ
x
)

.
5Hereafter, we simply denote two-dimensional shift-invariant Haar

wavelet transform as 2DHT.
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number of pixels), wavelet-based structure-tensor at the pixel loca-
tion n ∈ N is defined as

S̃(n)
u,κ := J̃(n)⊤

u J̃(n)
u ∈ R2(3J+1)×2(3J+1), (7)

J̃(n)
u,κ :=

[
J̃
(n)
u,κ,v J̃

(n)
u,κ,h

]
∈ R|In|×2(3J+1)

J̃(n)
u,κ := [[WJ,LLDvu]

κ
In

[WJ,LHDvu]
κ
In

[WJ,HLDvu]
κ
In

[WJ,HHDvu]
κ
In

. . . [W1,LHDvu]
κ
In

[W1,HLDvu]
κ
In

[W1,HHDvu]
κ
In

] ∈ R|In|×(3J+1).

The other term J̃
(n)
u,κ,h is defined in the same fashion of J̃(n)

u,κ,v . J̃(n)
u,κ

is termed as patch-based multiscale Jacobian matrix.
Finally, multiscale structure-tensor total variation (MSTV) of

u ∈ RN is defined as:

MSTV(u) :=

N∑
n=1

∥J̃(n)
u,κ∥∗, (8)

In the following, we reformulate the definition of MSTV in (8)
to apply it to PDS (Sec. 2.2) because the original definition includes
several linear operators implicitly, which disturbs us to compute the
proximal operator. We rewrite (8) as:

MSTV(u) := ∥ΓκPW̃Du∥∗,N , (9)

where W̃ = diag(W,W) ∈ R2(3J+1)N×2N (J is the decomposi-
tion level), Γκ, P ∈ R2(3J+1)N×2(3J+1)N are the weighting matrix
for calculating [·]κIn

and the expansion matrix that copies duplicated
elements among patches, respectively. Since the expansion matrix P
makes the local patches non-overlapping, the proximity operator of
∥ · ∥∗,N can be decoupled with the proximal operator of the nuclear
norm proxγ∥·∥∗,κ for each patch-based multiscale Jacobian J̃

(n)
u,κ,

which can be computed by singular value thresholding:

proxγ∥·∥∗(J̃
(n)
u,κ) = UΣγV

⊤,

Σγ = diag({σ1 − γ}+, . . . , {σr − γ}+), (10)

where U and V are orthogonal matrices obtained via singular value
decomposition, σ1, . . . , σr are the singular values of J̃

(n)
u,κ, and

{a}+ := max{a, 0}, respectively.

3.2. Weighted multiscale structure tensor total variation

As for the configuration of MSTV introduced in the previous sec-
tion, we should remark several points in the following.
Remark 1: The higher level 2DHT coefficients of the vertical and
horizontal gradient images (Dvu, Dhu) indicate the difference in-
formation between a target and distant pixels, while the lower one
between a target and close pixels.
Remark 2: Since the vertical and horizontal gradient images (Dvu,
Dhu) are sparse and their means are almost zero, the absolute val-
ues of each 2DHT coefficient becomes lower as the decomposition
level increases due to the averaging operation (6).
Remark 3: Singular value thresholding (10) during optimization is
considered as approximation of the column vectors J̃

(n)
u,κ towards a

certain low dimensional subspace spanned by a subset of right sin-
gular vectors {vi}Ki=1 ⊂ V (note that V is designed to optimally
represent J̃(n)

u,κ in any lower dimensionality in ℓ2-norm sense). In
particular, the first principal vector v1 ∈ {vi}Ki=1 tends to lean to-
wards vectors with a large norm.

n-th patch
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Fig. 3: Construction of patch-based multiscale Jacobian matrix J̃
(n)
u,κ

(decomposition level: J = 2).
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Fig. 4: Effect of amplifying subband coefficients (decomposition
level: 2) on the direction of the first principal vector. Each blue
and red sample represents the vector containing local subband co-
efficients, e.g., [WJ,LLDvu]

κ
In

and its amplified version, respec-
tively. (a) no amplification, (b) amplifying the first level subband
coefficients, (c) amplifying the second level subband coefficients.

These remarks inform us that we should amplify the 2DHT subband
coefficients and change the direction of the right singular vectors
{vi} to preserve important subband coefficients according to the
prior information of a latent image or the degree of degradation (see
Fig. 4). For example, since images consisting of periodic-pattern
textures satisfy nonlocal similarity property, higher level 2DHT co-
efficients (Remark 1) carry important information. we should am-
plify higher level 2DHT subband coefficients to preserve them as
possible. On the other hand, it is more important to consider adja-
cent pixels (severe degradation or few pattern textures), it good to
slightly amplify lower level 2DHT coefficients.

In order to tune the weight for the 2DHT coefficients, we further
introduce weighed MSTV (WMSTV) that involves a subband-wise
weighting (diagonal) matrix Q ∈ R2(3J+1))N×2(3J+1))N as:

WMSTV(u) := ∥ΓκPQW̃Du∥∗,N , (11)

3.3. Image recovery by MSTV/WMSTV

This section introduces MSTV/WMSTV into the cost function
as a regularizer. We assume that the observation v is obtained
through some degradation process (e.g., blur) Φ ∈ RL×N and
(additive/multiplicative) noise contamination D : RL → RL as
v = D(Φu⋆), where u⋆ ∈ RN is a latent image. Then, we attempt
to find u⋆ by solving the following equation:

u⋆ = argmin
u∈RN

Fv(Φu) + ∥ΓκPQW̃Du∥∗,N + ι[0,1]N (u) (12)

where Φ ∈ RL×N denotes the degradation process, Fv is some data
fidelity function, ιA(x) is the indicator function6 of a set A. [0, 1]N

6The indicator function of set A is defined as ιA(x) = 0, (x ∈
A), ιA(x) = ∞, (x /∈ A).
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Algorithm 1 Solver for (12)

1: set n = 0 and choose u(0), z(0)
1 , z(0)

2 , γ1, γ2.
2: while stop criterion is not satisfied do
3: ũ(n) = u(n) − γ1(Φ

⊤z
(n)
1 + D⊤W̃⊤Q⊤P⊤Γ⊤

κ z
(n)
2 )

4: u(n+1) = proxγ1ι
[0,1]N

(ũ(n))

5: t
(n)
1 = z

(n)
1 + γ2Φ(2u(n+1) − u(n))

6: t
(n)
2 = z

(n)
2 + γ2ΓκPQW̃D(2u(n+1) − u(n)).

7: z
(n+1)
1 = t

(n)
1 − γ2prox 1

γ2
Fv

(
1
γ2

t
(n)
1

)
.

8: z
(n+1)
2 = t

(n)
2 − γ2prox 1

γ2
∥·∥∗,N

(
1
γ2

t
(n)
2

)
.

9: n = n + 1.
10: end while
11: Output u(n).

(a) Lena (b) Barbara (c) Fingerprint (d) Mandrill

Fig. 5: Example of test images.

(a) Observation (b) TV (c) STV (d) WMSTV (i)

Fig. 6: Reconstructed images of compressed image sensing.

is the set of N -dimensional vectors whose entries are in [0, 1]. In
order to solve (12) by PDS, the functions g and h, and the matrix L
in (4) are set as:

g : RN → {0,∞}, u 7→ ι[0,1]N (u),

h : R2|I|N+L → [0,∞], (z1, z2) 7→ Fv(z1) + ∥z2∥∗,N ,

z1 = Φu, z2 = ΓκPQW̃Du, L =

[
Φ

ΓκPQW̃D

]
. (13)

According to this setting, a solver for (12) can be described as in
Algorithm 1, where the proximal operator of the indicator function
ι[0,1]N is the metric projection onto [0, 1]N , i.e., clip operation into
[0, 1]N .

4. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed MSTV and WMSTV
in image denoising and compressed sensing reconstructions. TV,
TGV, and STV were used as conventional methods. As test images,
we use Lena, Barbara, Fingerprint, and Mandrill, and the 300 im-
ages of the Berkeley Segmentation Database (BSDS300) [28]. The
size of the images was set to 256× 256. Fig. 5 shows the examples
of the original images.

In STV, MSTV, and WMSTV, the patch size was set to 3×3 and
the weight vector κ was uniform (all weights are set to 1/9). The
number of decomposition level for MSTV and WMSTV is set to 3.
We tested two sets of weight values for WMSTV: (i) (q1, q2, q3) =

Table 1: Numerical results (PSNR [dB])

Image denoising
Lena Barbara Fingerprint Mandrill Ave.

PSNR

TV 27.55 24.78 22.27 25.13 26.34
TGV 28.17 25.07 22.20 24.96 26.50
STV 27.78 24.89 22.96 25.49 26.67

MSTV 27.86 25.76 23.43 25.71 26.69
WMSTV (i) 27.86 25.76 23.49 25.74 26.75
WMSTV (ii) 27.81 25.79 23.43 25.68 26.69

Compressed image sensing
Lena Barbara Fingerprint Mandrill Ave.

PSNR

TV 29.52 24.03 21.87 25.93 28.06
TGV 30.72 24.44 21.44 25.95 28.85
STV 31.34 25.84 22.13 26.54 28.46

MSTV 31.60 28.06 22.72 26.89 29.20
WMSTV (i) 31.65 28.15 22.83 26.93 29.33
WMSTV (ii) 31.51 28.07 22.75 26.87 29.05

(1.2, 1, 1) and (ii) (q1, q2, q3) = (1, 1, 1.4), where qi is the weight
for all the j-th level 2DHT coefficients.

We used the cost function shown in (12), where the data-fidelity
function was set as Fv = ιB(v,ϵ) (B(v, ϵ) := {x ∈ RM |∥x−v∥2 ≤
ϵ}) is the indicator function defined by the ℓ2-norm ball. The radius
was set as ϵ = ∥u− v∥2, where u is an original image.

4.1. Image denoising

In this experiment, we add additive white Gaussian noise with the
standard derivation σ = 0.1 to the original images v = u + n (Φ
is set as I). The experimental results are shown in Table 1 (“Ave.”
means the average of all the resulting PSNRs from the BSDS300).
The table shows that WMSTV achieved the best performance in nu-
merical reconstruction quality. As mentioned in Sec. 3.2, ampli-
fying 2DHT coefficients at a higher level (WMSTV (ii)) is suitable
for Barbara richly containing periodic-pattern textures, while WM-
STV (i) is better for Lena, Fingerprint, and Mandrill that consist of
smooth regions or weak edge regions.

4.2. Compressed image sensing

In compressed image sensing, each incomplete observation v =

Φ̃u + n (Φ̃ := SΦ) is obtained by the Noiselet transform [29]
Φ followed by random downsampling S ∈ RL×N (L = 0.3 × N)
in the presence of additive white Gaussian noise n with standard
derivation σ = 0.1.

As shown in Table. 1, WMSTV achieved the best reconstruction
performance. Since compressed image sensing is a highly ill-posed
problem, the difference information between a target and distant pix-
els are not reliable. Therefore, WMSTV (i) provides better perfor-
mance for most images. Fig. 6 shows the reconstructed images of
Barbara. Obviously, the directional lines are accurately recovered
by WMSTV (i).

5. CONCLUDING REMARKS

In this paper, we extended from STV to MSTV for more robust im-
age recovery. According to the assumption of multiscale difference
low-rankness, we designed the patch-based multiscale Jacobian ma-
trix by applying 2DHT to gradient vectors. Besides, we introduced
WMSTV to tune the effect of multiscale difference low-rankness ac-
cording to observed images. Experimental results showed that WM-
STV provided the best performance in image denoising and com-
pressed image sensing. An extension of this work to multi-channel
images is our future work.
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