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ABSTRACT

In this work, we propose a method for the super-resolution
of images in the presence of impulse noise. First, the im-
pulse noise locations are identified using a detector and then,
an optimization problem is solved to reconstruct the high-
resolution image. Further, we propose the concept of image
reconstruction using multiple bases and 3D filtering to im-
prove the performance of the proposed method. We call this
concept as MB3D. We apply the proposed method along with
MB3D on various datasets to test its efficacy. We also perform
experiments on some real noisy images.

Index Terms— Super-resolution, sparse recovery, im-
pulse noise.

1. INTRODUCTION

There is a requirement of high-resolution images in many
areas such as multimedia, surveillance, remote-sensing etc.
However, limitations of solid state sensors restrict the spatial
resolution of captured images [1]. This triggers the need for
super-resolution (SR) algorithms, which produce a high reso-
lution (HR) image from one or more low resolution (LR) im-
ages captured. Actually, there exist many applications where
one cannot have more than one LR image such as the restora-
tion of old photos, calligraphy, or paintings etc. In such ap-
plications, single image super-resolution (SISR) has its own
importance. Hence, we only focus on SISR in this work.

Methods for SISR can be broadly classified into three cat-
egories: interpolation based methods, example based meth-
ods, and deep learning based methods. Interpolation based
methods [2, 3, 4] are computationally efficient but they tend
to produce smooth images with ringing and blurring artifacts.
Example based methods [5, 6, 7, 8, 9, 10] learn a relationship
between LR and HR patches of the training dataset assuming
that LR and HR patches have similar local geometry. This
relationship is used to obtain the HR patch from a given LR
patch. Deep learning based methods [11, 12, 13] learn the
mapping between training HR images and the upscaled ver-
sion of training LR images to obtain a high-resolution image
from a given LR image.

Although SISR has achieved great success, existing SR
algorithms often face challenge of being sensitive to noise
while dealing with degraded images. Impulse noise is a com-

mon cause of image degradation due to either faulty camera
sensors, faulty memory locations, or timing errors in analog
to digital converters [14]. There exist some work to perform
SR in the presence of impulse noise [15, 16]. However, these
methods are for multi-image super-resolution. For SISR, au-
thors in [17] proposed to use l1 fidelity with l1 regularization.

It is observed in the literature that multi-stage methods
perform better than l1 fidelity based methods for impulse de-
noising (not SR) of images [18]. Hence, we propose to use
a two-stage method for SR in the presence of impulse noise
in this paper. In the first stage, faulty/corrupted pixel loca-
tions are identified using a detector and in the second stage,
an optimization problem is solved for SR using wavelet as
the sparsifying transform and using the information of faulty
locations from the first stage.

There exist multiple wavelet bases and no wavelet basis
is optimal (in terms of reconstruction) for all images. One
wavelet basis may be optimal for one image while the same
basis is not optimal for another image. We got the same ob-
servation even at pixel level. One pixel is best reconstructed
with one wavelet while other pixels are best reconstructed
with some other wavelets. This motivated us to use multi-
ple wavelet bases simultaneously and use the reconstruction
ability of all bases used. This led us to propose the concept
of image reconstruction with multiple wavelet bases followed
by 3D filtering in this paper. We call this concept as MB3D.
We observe that MB3D is able to improve the performance of
all wavelets used.

Salient contributions of this works are as follows: 1) We
propose a method for SISR in the presence of impulse noise.
2) We propose the concept of MB3D to further improve the
performance of the proposed method.

2. PROPOSED METHOD

2.1. SISR in the presence of impulse noise

SISR can be mathematically modeled as below:

xl = DHxh, (1)

where xl and xh are the vectorized form of the LR and HR
image, respectively. D and H are the downsampling and blur-
ring operator, respectively.
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Fig. 1: Block diagram of the proposed method

If the image is corrupted by impulse noise, we have the
following noisy LR image:

xn = N (xl), (2)

where N (.) corrupts a pixel with probability p.
For the reconstruction of the HR image, we follow a two-

stage method. In the first stage, we identify the impulse noise
locations using the adaptive center-weighted median filter
(ACWMF) [19]. Let Ω be the operator that picks non-noisy
(identified as non-corrupted by ACWMF) pixels from xn and
store them in y as: y = Ω(xn). In the second stage, we solve
the following optimization problem to obtain the HR image:

minimize
xh

||y − Ω(DHxh)||pp + λ||Wxh||qq. (3)

Here, 0 ≤ q ≤ 1. If no detector is used, p = 2 for Gaussian
denoising and p = 1 for impulse denoising can be used.
In this way, the above formulation is in very general form
and can be used in various cases. Also, W is the wavelet
transform and λ is the regularization parameter. Writing
Ω(DHxh) = Axh in the above formulation and remov-
ing subscript from xh, we obtain the following optimization
problem:

minimize
x

||y −Ax||pp + λ||Wx||qq. (4)

As the above problem cannot be solved directly, we solve the
above problem using split-Bregman approach in the following
subsection in the context of MB3D.

2.2. Reconstruction improvement using MB3D

As discussed in section 1, different wavelets reconstruct a
pixel with different accuracy. Hence, we use multiple wavelet
bases to reconstruct an image in order to use the reconstruc-
tion ability of all wavelets used. This step is followed by 3D
filtering. The whole procedure is described below.

Using multiple wavelet bases, we solve the following op-
timization problem:

minimize
X

Nb∑
i=1

||y −Axi||pp + λ||Wixi||qq. (5)

Here, Nb is the number of wavelet bases used in the re-
construction process and Wi refers to the ith wavelet basis
used to reconstructs image xi. X = F(x1,x2, ...,xNb

)
and F(x1,x2, ...,xNb

) = [x1 x2 ... xNb
], i.e., the opera-

tor F stacks images reconstructed with various wavelets as
columns in the matrix X.

We solve the above formulation using split-Bregman ap-
proach [20]. Introduce proxy variables, ui = y − Axi and
vi = Wixi. The resultant constrained constrained problem
can be converted to the following unconstrained optimization
problem using Bregman variables bi and ci:

minimize
X,U,V

Nb∑
i=1

{
||ui||pp + λ||vi||qq+µ1||ui − y + Axi − bi||22

+ µ2||vi −Wxi − ci||22
}
,

where U = F(u1,u2, ...,uNb
) and V = F(v1,v2, ...,vNb

).
The above equation can be seen as following three sub-

problems which can be solved independently:

min
X

Nb∑
i=1

µ1||ui−y+Axi−bi||22+µ2||vi−Wixi−ci||22 (6)

minimize
U

Nb∑
i=1

||ui||pp + µ1||ui − y + Axi − bi||22 (7)

minimize
V

Nb∑
i=1

λ||vi||qq + µ2||vi −Wixi − ci||22 (8)

Equation (6) has the following closed form solution:

x̂i = (µ1A
′A + µ2W ′iWi)

−1(µ2W ′iy1i − µ1A
′y2i),

∀i ∈ {1, 2, ..., Nb} (9)

where y1i = vi − ci and y2i = ui − y − bi. Equations (7)
and (8) are lp regularized least squares which can be solved
using iterative p-shrinkage (IPS) [21] as below:

ûi = S(y −Axi + bi,
1

2µ1
, p), ∀i ∈ {1, 2, ..., Nb}

v̂i =S(Wixi + ci,
λ

2µ2
, q), ∀i ∈ {1, 2, ..., Nb}, (10)

where, S is the following function:

S(x, t, p) = max{|x| − t2−p|x|p−1, 0} � sign(x), (11)

where t is the threshold, |.| denotes the absolute value of the
vector, and � denotes the point-wise multiplication operator.

At the end, Bregman variables are updated using the fol-
lowing relation:

bi =bi − ui + y −Axi, ∀i ∈ {1, 2, ..., Nb}
ci = ci − vi +Wixi, ∀i ∈ {1, 2, ..., Nb} (12)
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Table 1: Performance of various methods on various datasets in terms of PSNR (in dB)

Average PSNR in dB over different datasets
Method Set5 Set10 Set14

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
l1 − l1 [17] 28.0 27.3 26.5 25.8 24.5 28.0 27.4 26.9 26.2 25.4 25.8 25.3 24.7 24.1 23.3
Med-wsdsr 27.2 26.5 25.5 24.2 22.9 27.0 26.4 25.4 24.3 23.4 25.0 24.4 23.8 23.0 22.1
l0TV-bic 28.2 26.8 26.6 25.8 24.7 28.2 27.4 26.6 25.9 25.4 25.4 24.6 24.1 23.6 23.0
l0TV-wsdsr 27.9 26.1 25.6 24.7 23.5 27.9 26.8 25.7 24.8 24.4 25.5 24.4 23.6 23.0 22.3
Proposed 29.3 28.6 27.7 27.0 26.1 28.9 28.2 27.6 26.8 25.8 26.0 25.6 25.0 24.4 23.8

Proposed-ID 33.0 32.5 31.9 31.2 30.3 31.6 31.3 31.0 30.5 30.0 29.4 29.1 28.7 28.1 27.6

Various Wavelets
2 4 6 8 10

P
S

N
R

 (
in

 d
B

)

26

27

28

29

30

31

Individual wavelet
MB3D

(a)

Various Wavelets
2 4 6 8 10

P
S

N
R

 (
in

 d
B

)

29

30

31

32

33

34

35

Individual wavelet
MB3D

(b)
Fig. 2: Reconstruction results (in terms of PSNR in dB) of image
(a) ‘Lena’ with 15% impulse noise, (b) ‘House’ with 20% impulse

noise. Up-sampling factor=2.

The above procedure is repeated for either a fixed num-
ber of iterations or until the solution converges. We use 50
iterations in our experiments as the solution was observed to
converged before that.

Once we obtain reconstructed images with all bases in the
form of a 3D cube, i.e., matrix X, we extract 3D patches from
this cube and apply 3-D filtering to it. 3D filtering consists of
two steps. In the first step, we compute the 3D DCT transform
of the patch, apply soft thresholding to the resultant patch, and
compute the inverse 3D transform of it. In the second step, we
vectorize each 2D plane of the 3D patch to obtain a matrix and
approximate the resultant matrix to rank-1 matrix. In the end,
we reshape the matrix to obtain the 3D patch and put it back
to its location.

In our experiment, we use the patch size of 8 × 8 and we
use the threshold of 0.04 for soft-thresholding of the patch.
The complete block diagram of the proposed method is shown
in Fig. 1.

3. EXPERIMENT
In this section, we present various experiments to show the
efficacy of the proposed method. We perform all experiments
on random-valued impulse noise. We evaluate the perfor-
mance in terms of peak signal to noise ratio (PSNR) in dB.
We used λ = 1, µ1 = 10, µ2 = 10, p = 2, and q = 1 in
all our experiments. We used 11 different orthogonal and
bi-orthogonal wavelets: ‘db1’,‘db2’,‘db4’,‘db10’, ‘bior2.2’,
‘bior4.4’, ‘sym6’,‘sym8’,‘sym10’, ‘coif4’ and ‘coif5’. Please
note that these wavelets show different performance on
patches depending upon which wavelet is most correlated
with that patch.

3.1. Effect of MB3D on robust SR

To show the effect of MB3D, we perform SR with an up-
sampling factor of 2 on images ‘Lena’ and ‘House’ with 15%
and 20% random-valued impulse noise, respectively. Results
are shown in Fig. 2a and Fig. 2b, respectively. The x-axis
represents various wavelets with their sorted performance in
terms of PSNR (shown on the y-axis). It can be observed
that: 1) Reconstruction performance varies too much with
wavelets when individual wavelets are used without MB3D.
Specifically, there is a performance difference of 2 dB and 3
dB in PSNR between poorly performing and best-performing
wavelets while reconstructing image ‘Lena’ and ‘House’,
respectively. 2) MB3D not only equalizes the performance
of every wavelet, it enhances the performance over best per-
forming wavelet. 3) There is a performance improvement of
3 dB and 4 dB over the poorly performing wavelet, while
there is an improvement of 0.9 dB and 1.8 dB over best-
performing wavelet. As reconstruction results are similar
with all wavelets after MB3D, one can choose output of any
wavelet after MB3D. This shows the ability of MB3D to en-
hance the reconstruction performance over various wavelets.

3.2. Comparison with existing methods

In this sub-section, we compare the performance of the pro-
posed method with several of its competitors. We perform ex-
periments on three datasets. Two of these datasets are widely
used for SR algorithms. These are Set5 and Set14. We also
perform experiments on the dataset used in [22]. This dataset
contains 10 images of different frequency characteristics, 3
images are rich in low frequency, 3 images are rich in high
frequency, and rest have varied low and high-frequency con-
tent. We use this dataset as it makes more sense to apply an
algorithm on images of variable frequency content as perfor-
mance varies over different frequency content images. We
call this dataset as ‘Set10’. We perform experiments with 5%
to 25% random values impulse noise.

We compare the performance with existing l1− l1 method
[17]. As impulse denoising followed by SR is one category
of methods for robust SR, we consider three such methods in
this category: Med-wsdsr, l0TV-bic, and l0TV-wsdsr. Med-
wsdsr stands for median filtering (simple and fast method for
impulse denoising) followed by wsdsr [23] for SR. l0TV-bic
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 3: Visual comparison of various methods on one image of ‘Set5’ dataset at 15% impulse noise and up-sampling factor=2.
(a): Original high-resolution image, (b) noisy low-resolution image; image reconstructed with (c) l1 − l1, (d) Med-wsdsr, (e)
l0TV-bic, (f) l0TV-wsdsr, (g) Proposed method, and (h)Proposed method with ideal detector (Proposed-ID)

and l0TV-wsdsr stands for l0TV [24] for impulse denoising
followed by bicubic interpolation and wsdsr for SR, respec-
tively. Please note that wsdsr and l0TV are state-of-the-art
methods for SR and impulse denoising, respectively. Table
1 shows all these results. We also use the proposed method
with the ideal detector, shown as Proposed-ID (performance
in blue color) in the table. This uses the actual locations of
the faulty pixels instead of using ACWMF as the detector. We
also tried wsdsr alone or SR followed by impulse denoising
but results were very poor with them.

It can be observed from the table that the proposed method
is better than all other methods. Also, the performance with
the Proposed-ID is much better than the proposed method
which shows the capability of the method to reconstruct im-
ages with much higher accuracy if an ideal detector is present.

Visual results on one of the images of ‘Set5’ dataset at
15% noise ratio and up-sampling factor=2 is shown in Fig. 3.
Eye of the ‘baby’ is zoomed to have a better visualization of
results. We can see that l1 − l1 has several artifacts while
Med-wsdsr produces very smooth images with very fewer
details preserved. l0TV-bic and l0TV-wsdsr has noisy sam-
ples remaining. The images reconstructed with Proposed and
Proposed-ID are very close and free from such artifacts.

3.3. Experiment on real noisy images

We show the application of the proposed method on scratched
images (Fig. 4a and 4c) as scratches can be viewed as impulse
noise in the image [24]. Fig. 4b and 4d show SR images

(a) (b) (c) (d)

Fig. 4: Visual results of SR on real scratched low resolu-
tion images with up-sampling factor=2 using the proposed
method. (a) and (c) low resolution scratched images; (b) and
(d) reconstructed HR image.

reconstructed with up-sampling factor=2 using the proposed
method.

4. CONCLUSION AND FUTURE WORK

A method for super-resolution in the presence of impulse
noise has been proposed. The concept of image reconstruc-
tion using multiple bases and 3D filtering (MB3D) has also
been proposed to further improve the performance. Although
here MB3D has been applied in the application of robust
super-resolution only, it can be further explored in several
inverse problems such as denoising, compressed sensing,
deblurring etc.
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