
A CONVEX LIFTING APPROACH TO IMAGE PHASE UNWRAPPING

Laurent Condat∗

Univ. Grenoble Alpes, CNRS,

GIPSA-Lab, Grenoble, France

Daichi Kitahara, Akira Hirabayashi

College of Information Science and Engineering

Ritsumeikan University, Kusatsu, Japan

Contact: Laurent.Condat“at”gipsa-lab.grenoble-inp.fr

ABSTRACT

The nonlinear inverse problem of 2-D phase unwrapping con-

sists in estimating an image, while its pixel values are observed

modulo 2π. A variational formulation is considered, which

consists in minimizing an energy, convex or not, under the

nonconvex data fidelity constraints. We propose a new con-

vex relaxation of this combinatorial problem. It shows similar

or better performances than the state of the art.

Index Terms— phase unwrapping, convex optimization,

variational method, convex relaxation, lifting

1. INTRODUCTION AND PROBLEM

FORMULATION

Phase unwrapping is a classical imaging problem [1, 2, 3, 4, 5]

with a wide range of applications, such as interferometric syn-

thetic aperture radar (InSAR) [6, 7], magnetic resonance imag-

ing [8, 9], interferometry [10], or profilometry [11]. In these

applications, the true phase values are observed modulo 2π
and lie in the range [−π, π). Phase unwrapping then consists

in recovering the lost integer multiples of 2π, by assuming typ-

ically that the sought image is smooth, except at discontinuities

involving a small subset of all pixels.

The phase unwrapping problem can be formulated as fol-

lows: we want to estimate an unknown image x♯ ∈ R
N1×N2

of height N1 and width N2, from its wrapped version

y = (x♯)w, (1)

where the wrapping operator, applied pixelwise, maps t ∈ R

to

(t)w =
(

(t+ π) mod 2π
)

− π ∈ [−π, π). (2)

The image x♯ can contain noise. In this paper, we do not aim

at removing noise. If the unwrapping process is robust to the

presence of noise, the noise can be removed after unwrapping

using any image denoising method.

Because of the modulo operation, each pixel value x♯
n1,n2

can be expressed as the sum of its wrapped version yn1,n2
=
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(x♯
n1,n2

)w and an integer multiple of 2π. So, the goal is to

recover all these integers. To that aim, we can notice that

(∇x♯)w = (∇y)w, (3)

where the discrete gradient ∇ is the concatenation of horizon-

tal and vertical finite differences:

∇hx♯
n1,n2

= x♯
n1,n2+1 − x♯

n1,n2
, (4)

∇vx♯
n1,n2

= x♯
n1+1,n2

− x♯
n1,n2

. (5)

In 1-D, with x♯ ∈ R
N , if the so-called Itoh condition [12]

is satisfied, according to which every finite difference x♯
n+1 −

x♯
n belongs to [−π, π), then x♯ can be recovered from y by

integrating recursively, up to a global constant. Indeed, for

every n = 1, . . . , N − 1,

x♯
n+1 = x♯

n + (yn+1 − yn)w. (6)

This is the same in 2-D: if every horizontal and vertical finite

difference of x♯ belongs to [−π, π), then

∇x♯ = (∇y)w (7)

and x♯ can be recovered exactly from y, with the indetermi-

nacy of the global constant resolved, for instance, by assuming

that x♯
1,1 is known or equal to y1,1.

If the Itoh condition is not satisfied, for instance because of

noise, with a slope or jump of absolute amplitude larger than π
in at least one pixel of x♯, the recovery is hopeless in 1-D with-

out further assumptions, e.g. regularity of the second deriva-

tive [13]. In 2-D, however, an important property can be used

to make unwrapping possible: for every n1 = 1, . . . , N1 − 1
and n2 = 1, . . . , N2 − 1,

x♯
n1+1,n2+1 − x♯

n1,n2
(8)

= (x♯
n1+1,n2

− x♯
n1,n2

) + (x♯
n1+1,n2+1 − x♯

n1+1,n2
) (9)

= (x♯
n1,n2+1 − x♯

n1,n2
) + (x♯

n1+1,n2+1 − x♯
n1,n2+1). (10)

In other words,

∇hx♯
n1,n2

+∇vx♯
n1,n2+1 = ∇vx♯

n1,n2
+∇hx♯

n1+1,n2
. (11)
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This property, sometimes called network flow constraint [14],

holds for every image. It is the discrete equivalent of the prop-

erty that the curl of the gradient field of a 2-D scalar function

is zero. This property makes phase unwrapping much less ill-

posed in 2-D than in 1-D. Thus, we can formulate phase un-

wrapping as a (nonconvex) optimization problem, expressed

in terms of the finite differences of the reconstructed image:

given some cost functions fh
n1,n2

and fv
n1,n2

, which may or

may not depend on n1, n2, h, v,

minimize
dh,dv

∑

n1,n2

fh
n1,n2

(dhn1,n2
) + fv

n1,n2
(dvn1,n2

) (12)

s.t. (dhn1,n2
)w = (∇hyn1,n2

)w, (dvn1,n2
)w = (∇vyn1,n2

)w,

and dhn1,n2
+dvn1,n2+1 = dvn1,n2

+dhn1+1,n2
, for every n1, n2.

Then, given the solution (d̃h, d̃v), the reconstructed un-

wrapped image x̃, with ∇x̃ = (d̃h, d̃v), is obtained by a

simple raster-scan summation, like in (6). x̃ is a valid un-

wrapped image, in the sense that

(x̃)w = y. (13)

When fh
n1,n2

= fv
n1,n2

is the l1 norm, the problem con-

sists in minimizing the anisotropic total variation [15] of the

reconstructed image, under the nonconvex constraint that its

wrapped version is y. Bioucas-Dias and Valadão [16] pro-

posed an algorithm called PUMA to solve this problem ex-

actly, using graph cut techniques. It can be considered as

the state of the art. Even better results can be expected by

using a nonconvex cost function fn1,n2
. For instance, with

f(t) = {0 if t ∈ [−π, π), 1 else}, the NP-hard problem is to

minimize the number of adjacent pixel pairs, where the Itoh

condition is not satisfied [17].

An alternative formulation is:

minimize
dh,dv

∑

n1,n2

∑

s∈{h,v}

g
(

dsn1,n2
− (∇syn1,n2

)w
)

(14)

s.t. dhn1,n2
+ dvn1,n2+1 = dvn1,n2

+ dhn1+1,n2
, for every n1, n2.

We can note that (14) is a particular case of (12), with f s
n1,n2

=
g(· − (∇syn1,n2

)w), if g(t) = +∞ whenever t /∈ 2πZ. If the

latter condition is not met, there is no guarantee that the recon-

structed image x̃ is a valid solution, since (13) may be violated.

g can be chosen as a lp norm [18]. If p ≥ 1, the problem is

convex and can be solved efficiently using modern proximal

splitting techniques [19, 20, 21, 22]. For p = 1, minimum cost

network flow techniques can be used, as proposed in [14]; we

can note that the integer constraints ((dh, dv)−∇y)w = 0 are

missing, but since the ℓ1 norm induces sparsity, together with

the network flow constraint, they will be satisfied [14].

Other types of methods have been proposed, including

path following and branch cut methods [23, 8], belief propa-

gation [24], Bayesian estimation [25], and spline approxima-

tion [13].

We will show in the next section how to solve the opti-

mization problem (12) with any function f , by constructing a

convex relaxation of it.

2. LIFTING AND CONVEX RELAXATION

Lifting consists in reformulating a difficult nonconvex opti-

mization problem in a higher dimensional space. The lifted

problem is still nonconvex but its combinatorial nature is un-

folded to some extent. Thus, a convex relaxation of the lifted

problem has a global minimizer, which will yield a good es-

timate of the solution to the initial problem, in general. This

idea has been successfully applied to several segmentation and

labeling problems in imaging and computer vision [26, 27, 28,

29, 30].

In our case, solving (12) amounts to find integers khn1,n2

and kvn1,n2
, for every n1, n2, s ∈ {h, v}, such that

dsn1,n2
= (∇syn1,n2

)w + 2πksn1,n2
. (15)

Every ksn1,n2
is assumed to lie in −Q, . . . , Q, for some known

integer Q ≥ 1. Let us define, for every n1 = 1, . . . , N1 − 1,

n2 = 1, . . . , N2 − 1, the residual

rn1,n2
=

(

(∇hyn1,n2
)w + (∇vyn1,n2+1)w (16)

− (∇vyn1,n2
)w − (∇hyn1+1,n2

)w
)

/(2π). (17)

Then the network flow constraint is, for every n1, n2,

khn1,n2
+ kvn1,n2+1 − kvn1,n2

− khn1+1,n2
= −rn1,n2

. (18)

The lifting process consists in reformulating the problem

by introducing, for every variable ksn1,n2
, s ∈ {h, v}, a binary

assignment vector zsn1,n2
= (zsn1,n2,q

)Qq=−Q of size 2Q + 1.

The elements of a binary assignment vector are in {0, 1} and

their sum is 1. Then ksn1,n2
and z

s
n1,n2

are related by

ksn1,n2
=

∑Q
q=−Q qzsn1,n2,q

. (19)

Second, the cost function in (12) can be rewritten as

∑

n1,n2

∑

s∈{h,v}

Q
∑

q=−Q

csn1,n2,q
zsn1,n2,q

, (20)

with csn1,n2,q
= f s

n1,n2

(

(∇syn1,n2
)w + 2πq

)

. (21)

We have all the ingredients to reformulate the problem (12)

with only the vectors z
s
n1,n2

as variables, by plugging (19)

into (18). But since the convex relaxation of the lifted prob-

lem will simply consist in replacing the binary constraints by

simplex constraints, the obtained convex relaxation would not

be tight enough. For instance, the vector (1
2
, 0, 1

2
) would play

the same role as (0, 1, 0) in the network flow constraint. We

need to be more restrictive to ensure that the solution vectors

will be binary. Therefore, we propose to further increase the

dimension of the problem, by introducing not vectors but ma-

trices M1
n1,n2

and M
2
n1,n2

, of size (2Q+ 1)× (2Q+ 1), for

every n1 = 1, . . . , N1 − 1, n2 = 1, . . . , N2 − 1. Their ele-

ments are in {0, 1} and their sum is one. The vectors z
s
n1,n2
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(a) original image x♯ (b) wrapped image y (c) reconstruction error x̃− x♯

Fig. 1. Experiment 1, see Sect. 3 for details. The unwrapped image x̃ with the proposed method, not shown, is visually identical

to x♯; in fact, their difference is zero at all but 3 pixels, as shown in (c). The result of PUMA is identical to ours. The result of

COS is very similar, with an unwrapped image equal to x♯ at all but 8 pixels.
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(a) original image x♯ (b) wrapped image y (c) unwrapped im., PUMA

Fig. 2. Experiment 2, see Sect. 3 for details. With COS and the proposed method, we have perfect reconstruction: x̃ = x♯.

will be retrieved as their marginals:

∑Q
q=−Q M1

n1,n2,q,q′
= zhn1+1,n2,q′

, (22)
∑Q

q′=−Q M1
n1,n2,q,q′

= zvn1,n2,q
, (23)

∑Q
q=−Q M2

n1,n2,q,q′
= zhn1,n2,q′

, (24)
∑Q

q′=−Q M2
n1,n2,q,q′

= zvn1,n2+1,q. (25)

The network flow constraint can now be rewritten as:
∑

q,q′ : q+q′=b

M1
n1,n2,q,q′

=
∑

q,q′ : q+q′=b−rn1,n2

M2
n1,n2,q,q′

,

(26)

for every b = −2Q, . . . , 2Q (an empty sum is set to zero). It

is easy to rewrite the cost function in (12) as a summation over

all indices of M1 and M
2, similar to eq. (20).

Finally, a convex relaxation of this integer linear program

is taken, by dropping the binary constraints. That is, M
1

and M
2 are assumed to lie in the simplex: their elements

are nonnegative and their sum is one [31]. This linear pro-

gram is solved using an overrelaxed Chambolle–Pock algo-

rithm [20, 21]. If needed, a rounding step is performed as a

postprocess on the solution to ensure that (x̃)w = y.

3. EXPERIMENTS

We compare Costantini’s method [14], denoted by COS (us-

ing code found at https://mathworks.com/matlabcentral/file

exchange/25154-costantini-phase-unwrapping), the PUMA

method [16] (using code on the first author’s webpage), and

the proposed method, for which we adopt the truncated ℓ1 cost

function defined as

f : t ∈ R 7→ min(|t|, π), (27)

which has the advantage of being continuous and satisfying

f(−π) = f(π). This choice is arbitrary, and we leave for fu-

ture work the comparison with other functions. In all experi-

ments, the global solution of the problem (12) was achieved by

our method. The MATLAB codes were run on an 2012 Apple

Macbook Pro laptop with a 2.3 GHz CPU. The wrapped im-

ages in Figs. 1–4 were displayed using the C2 cyclic colormap

designed by P. Kovesi [32].

Experiment 1. A 2-D Gaussian function with amplitude 9π
was sampled in an image of size N1 = 176, N2 = 256. White

Gaussian noise of std. dev. 0.7 was added. We used Q = 1.

The reconstruction is almost perfect with all three methods, see

in Fig. 1. The computation time of the COS, PUMA, proposed

methods was about 1s, 1s, 5min, respectively.

Experiment 2. A synthetic image, of size 32× 32, or a shear

of amplitude 8π was generated. Perfect reconstruction was

achieved by COS and the proposed method (Q = 4). PUMA

did not give the expected result; this shows the interest of a

nonconvex cost function f in the presence of abrupt jumps.

Experiment 3. We consider the MRI head image from the

freely available dataset of [4] (ftp://ftp.wiley.com/public/sci
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Fig. 3. Experiment 3 with a MRI head image, see Sect. 3 for details.
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Fig. 4. Experiment 4 with the elevation map of Mount Asama in Japan, see Sect. 3 for details.

tech med/phase unwrapping). There is no ground truth to

compare the unwrapped images. COS gives an image with

visible artifacts. PUMA and the proposed method yield com-

parable results.

Experiment 4. We consider the elevation map of Mount

Asama, Japan, to simulate an InSAR acquisition. Noise fol-

lowing a realistic noise model [13] is added and the image is

wrapped. COS gives an image with incorrect upper left part.

PUMA and the proposed method yield similar results of good

quality.

4. CONCLUSION

We have proposed a convex relaxation of the phase unwrap-

ping problem based on lifting. That is, an equivalent non-

convex problem has been formulated in a higher dimensional

space with 0-1 variables, then this lifted problem has been re-

laxed into a convex one. In future work, we plan to design new

algorithms to solve such large-scale linear programs, by lever-

aging recent advances in probabilistic inference [33]. We also

plan to compare the reconstruction quality for other costs than

the truncated ℓ1 cost considered here, for instance the trun-

cated quadratic cost used in the Mumford–Shah model [34].
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