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ABSTRACT

The visual quality of images resulting from Super Reso-
lution (SR) techniques is predicted with blind image quality
assessment (BIQA) models trained on a database(s) of human
rated distorted images and associated human subjective opin-
ion scores. Such opinion-aware (OA) methods need a large
amount of training samples with associated human subjective
scores, which are scarce in the field of SR. By contrast, opin-
ion distortion unaware (ODU) methods do not need human
subjective scores for training. This paper presents an opinion-
unaware BIQA measure of super resolved images based on
optimally extracted perceptual features. This set of features
was selected using a floating forward search whose objec-
tive function is the correlation with human judgment. The
proposed BIQA method does not need any distorted images
nor subjective quality scores for training, yet the experiments
demonstrate its superior quality-prediction performance rela-
tive to state-of-the-art opinion-unaware BIQA methods, and
that it is competitive to state-of-the-art opinion-aware BIQA
methods.

Index Terms— Image quality assessment, super resolu-
tion, no reference image quality assessment

1. INTRODUCTION

Single image super resolution (SISR) algorithms aim to con-
struct a higher resolution image based on a single image of
lower resolution. Then, these types of algorithms must predict
missing information between pixels. In the last two decades
there have been numerous SISR methods proposed. The rel-
ative performances of these have typically been evaluated us-
ing image quality assessment (IQA) models like the peak sig-
nal to noise ratio (PSNR) and the structural similarty index
(SSIM) [1].

Previous studies [2] have shown that PSNR and SSIM
do not correlate very well with human perception of super-
resolved image quality. Other types of metrics such as infor-
mation fidelity criterion (IFC) [3] correlate better with human
perception when evaluating super resolved images. PSNR,
SSIM and IFC are full-reference image quality assessment
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(FR-IQA) algorithms, and require an original reference im-
age against which to determine the quality of an image, which
in practice is sometimes impossible to obtain. By contrast,
blind image quality assessment (BIQA) algorithms do not re-
quire an original image to assess the quality. BIQA of super
resolved images has received some renewed attention after
the introduction of a database created by Ma et al [4], com-
posed of 1620 super resolved images and corresponding sub-
jective quality scores provided by human subjects. Although
there are other annotated data sets for SR, such as [5] and
[6], these are not publicly available. The Ma et al database
has helped drive the development of several BIQA algorithms
for super-resolved images, including models based on two-
stage random-forest regression models [4] and convolutional
neural networks [7] and [8]. These approaches are opinion-
aware BIQA methods, which require a large number of super-
resolved images with human subjective scores on which to
learn a regression model, which can cause them to have rather
weak generalization capability. Furthermore, when apply-
ing a model trained on one database to another database, the
quality prediction performance can be impaired. Given these
disadvantages of OA BIQA methods on super-resolved im-
ages, it is of great interest to create ‘opinion-unaware’ models
which are not trained on samples of distortions, nor on hu-
man subjective scores. To the best of our knowledge, ODU
BIQA models have not been developed to evaluate super-
resolved images. This paper aims to develop an opinion-
unaware BIQA method, based on an optimal feature selection
process that can compete with OA BIQA methods.

The rest of this article is organized as follows. In Section 2
the perceptual quality aware features are introduced. Section
3 presents a BIQA measure that does not require training, and
studies which features are best suited for the assessment of
the quality of super resolution images. Section 4 analyses the
performance results of the proposed metric and also studies
the performance of the selected features in an OA framework
as proposed in [4]. Finally, Section 5 concludes the paper.

2. PERCEPTUAL QUALITY AWARE NSS FEATURES

A promising area in BIQA is analyzing the natural scene
statistics (NSS) of the images to be evaluated. NSS describe
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statistical regularities in images captured by an optical cam-
era, as opposed to machine generated images. Previous works
on infrared images [9] and fused visible and long wave in-
frared (LWIR) images [10] have used a set of perceptual 138
features based on the processing models: mean subtracted
contrast normalized (MSCN) [11], paired products [11],
paired log-derivatives [12] and steerable pyramid responses
[13]. In [14] and [15], the authors developed ODU BIQA
metrics referred to as NIQE and IL-NIQE, based on NSS
features that correlate highly with human quality perception.
These techniques extract a set of local features from an im-
age, then fit the feature vectors to a multivariate Gaussian
(MVG) model. The quality of a test image is then predicted
by a statistical distance between its MVG model (local or
global) and the MVG model learned from on corpus of pris-
tine naturalistic images. Our work is inspired by NIQE and
IL-NIQE, nonetheless it performs better because we rely on:
(i) a set of 297 enriched features obtained by combining the
features deployed in [10], [4], and [16] as shown in Table 1,
and (ii) an optimal feature selection process based on floating
forward search, whose objective function is correlation with
human judgment. This allows us to identify a set of features
that are particularly sensitive to the visual distortions that
occur on super resolved images.

3. IDENTIFYING AN OPTIMUM FEATURE SET

A pristine image model was created on 289 images: 170 im-
ages were taken from the BSD200 [17] image set, 29 images
were selected from LIVE IQA [18] and 90 images were ex-
tracted from the database used to build the pristine model for
IL-NIQE [15]. An MVG model was fitted to the 297 features
extracted from the pristine images, yielding a mean vector p
and covariance matrix X using the standard maximum like-
lihood estimation method [19]. The distance to the pristine
model is defined as:
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where = (u1, o, - - - fin)> (€1, C2, ..., ¢p) is the diagonal
of X, n is the number of features, and z = (z1,z2,...,Ty)
are the features extracted from the image whose perceptual
quality is to be predicted. Super resolution reconstruction
processes are complex, and a super-resolved image may con-
tain multiple interacting distortions. Hence, as in the case of
authentically distorted images [16], some perceptual features
are not reliable for super resolved images.

Therefore, we deployed sequential forward floating selec-
tion [20] to select a best performing subset of features from
among the 297 features. To test this subset of features, it was
necessary to separate a set of images before implementing
the selection procedure, so the testing set would not be corre-
lated with the training set. This set, that we will refer as the

# feats # feats Description
initial set final set

18 3 MSCN
48 5 Paired Products
42 0 Paired log-derivatives
36 18 Steerable Pyramid
18 0 DCT
45 2 Wavelet Coefficients
75 75 PCA analysis
9 8 Sigma field
6 1 Difference of Gaussians

Table 1. Summary of the initial (297 features) and final fea-
ture space (112 features) after feature selection process.

excluded set henceforth, was made of all the super resolved
versions of 8 original high resolution (HR) images selected
randomly from Ma et al dataset. This excluded set remained
fixed throughout the feature selection process. This group
consisted of 432 images (8 images x 9 SR algorithms x 6
spatial resolutions), while 1188 images were used to find the
best performing subset. The sequential sub-optimal forward
floating selection procedure looks for the subset that maxi-
mizes the linear correlation coefficient (LCC) between the
distance (1) and the perceptual scores. The procedure com-
pares the obtained value against other possible subsets of the
same size, and selects the one with the highest LCC. The sub-
set found with the procedure is not certain to be the best, yet
finds a good subset without exhaustively exploring every sub-
set of a specific size. Through this procedure, possibly the
best subset at each size is obtained. Since it is possible that
the optimum set selected on each size set could end up being
content dependent, the procedure was performed 100 times on
648 images selected randomly from the 1188. For each run,
a maximum value of correlation was obtained, however sets
whose correlation differed from the optimum one by no more
than 0.02 were retained. On each run, a group of sets were
selected in such a way that none were a subset of another, and
each group of sets differed from the maximum correlation by
0.02. Finally, the number of times a feature appeared was
counted and the final set was selected as the group of features
that appeared 99% of the time. This final set included 112
features distributed as shown in Table 1.

We used the t-SNE technique [21] to visualize the high
dimensional optimal set of features (using MatLab routines
‘tsne’ and ‘seuclidean’ distance) extracted from the 1620 im-
ages of the Ma et al database and 289 images in the pristine
set. This result allows to see the tendency that when features
are closer to the pristine set, the better the perceptual scores
given to the image. These are encouraging results supporting
the idea of using the distance from the pristine set as a quality
function.
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Fig. 1. t-SNE visualization using the ‘seuclidean’ distance.
Each dot is an image, and the colors represent the range where
the perceptual score of the image falls. The images of the
pristine set do not have scores.

A closer look at the optimal feature set allows us to iden-
tify certain peculiarities. Specifically in regards to the features
extracted from the paired products and steerable pyramid co-
efficient distributions. The paired product features were cal-
culated on 3 different resolutions of each image: the original
resolution, half the resolution and a quarter of the resolution.
It is interesting to notice that for the optimum set, the paired
product features selected were only selected at half and quar-
ter resolution. The only features selected from the steerable
pyramid set were the variances of the distributions of each
subband, and they were selected at all three resolutions.

4. RESULTS AND ANALYSIS

4.1. Opinion Distortion Unaware Quality Analyzer

Our opinion and distortion unaware quality analyzer is de-
fined as the distance between 112 dimensional representation
of the pristine model, and that of the super-resolved image to
be evaluated. This measures is compared against NIQE and
IL-NIQE, because they are state-of-the-art ODU BIQA mod-
els. For fair comparison, the pristine image set used by NIQE
and IL-NIQE was defined as the pristine set of 289 images
described previously. The results of full reference IQA algo-
rithms were also added to give a more complete view of the
relative performances of the models. The linear correlation
coefficient (LCC) and the Spearman rank correlation coeffi-
cient (SRCC) on the excluded set of 432 images were calcu-
lated, with the results shown in Table 2. The model defined in
the 112 features dimensional space outperformed the SRCC
values of IL-NIQE, NIQE, and SSIM.

Table 3 presents the results of using different combina-
tions of features. These results indicate that when all the fea-
tures are used the correlation suffers, indicating that some of

Table 2. Performance of different IQA algorithms on the ex-
cluded images.

the features do not correlate well with human judgments. The
results obtained using the paired products at only half reso-
lution and quarter resolution provided a better performance
than using all the paired products features, which could in-
dicate that these features performance is correlated with the
resolution of the images. Furthermore, the paired products at
half and quarter resolution yield improvement in performance
compared with using all the features. Similarly to [14], per-
formance vs the size of the pristine set was tested. The size of
the pristine set was modified by randomly deleting a number
of images. This procedure was done 1000 times, recording
the SRCC each time. The results are depicted in Figure 2, in-
dicating that even with only 20 images in the pristine set it is
possible to obtain an SRCC higher than 0.8.
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Size of the Pristine Set
Fig. 2. Variation of SRCC vs the size of the pristine set. The
blue line is the mean value over 1000 variations at each size,

while the dashed red lines indicate one standard deviation
confidence bands.

4.2. Opinion Distortion Aware Quality Analyzer

Once the features are selected, a common practice in image
quality assessment model design is the use of a regression
model. Two common regression techniques in BIQA for SR
are the random forest regression (RFR) and support vector re-
gression (SVR). RFR has shown a good performance on the
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| LCC | SRCC

feats-297 | 0.698 | 0.688
Maetal | 0.703 | 0.673
PP-all 0.627 | 0.617
PP-3/4 | 0.766 | 0.790
SP-all 0.423 | 0.442
SP-var 0.673 | 0.665

Table 3. Comparison of models performances. The model
feats-297 comprises the features described in Table 1. Ma et
al has 138 features described in [4], all the pairwise products
(PP-all), the pairwise products at half and quarter resolution
(PP-3/4), all the steerable pyramid features (SP-all) and the
variances of the steerable pyramid features at all resolutions
(SP-var)

Training Set Size
20% | 40% | 60% | 73.3%
Ma et SRCC | 0.860 | 0.886 | 0.893 | 0.896
al LCC | 0.888 | 0.907 | 0.914 | 0916
RMSE | 1.088 | 0.991 | 0.964 | 0.954
SRCC | 0.896 | 0.913 | 0.919 | 0.922
Ours LCC | 0.906 | 0.922 | 0.928 | 0.931
RMSE | 1.011 | 0.929 | 0.891 | 0.875

Table 4. Performance results on the excluded set as a function
of training set size.

recent work of Ma et al [4], who designed a two stage re-
gression model that was also applied to the optimal set of 112
features. To assess performance, the training size was varied
50 times over 20%, 40% and 60% of the data. For fair com-
parison, the training set did not include the excluded set of
432 images and the performance evaluation was done on the
excluded set. The size of 73.3% of the training size was also
added and corresponds to 1188 images which are the total im-
ages without the excluded set. The results are shown in Table
4 and correspond to the mean performance result for the 50
iterations.

We conducted another test where the training set size was
randomly selected 50 times to be 20%, 40%, 60% and 80%
of the 1620 images. The testing set was composed of the
remaining images. The results are depicted in Table 5 and
correspond to the mean performance result for the 50 itera-
tions. As may be seen, the optimal set of features correlates
better than the Ma et al model using every performance mea-
sure and for all training sizes. The results obtained at 80%
of the training set size yielded SRCC and LCC values com-
parable with those obtained by a recent convolutional neural
network approach reported in [7]. Additionally, we also cre-
ated a trained model using the paired products features at half
resolution and at quarter of the resolution (PP-3/4) under the
two-stage regression model. The performance was assessed
at different training sizes following the previous procedure,

Training Set Size
20% | 40% | 60% | 80%
Ma et SRCC | 0.859 | 0.891 | 0.907 | 0.917
al LCC | 0.884 | 0.910 | 0.921 | 0.931
RMSE | 1.129 | 1.003 | 0.938 | 0.881
SRCC | 0.902 | 0.923 | 0.934 | 0.939
Ours LCC | 0913 | 0.932 | 0.942 | 0.948
RMSE | 0.980 | 0.870 | 0.808 | 0.768
SRCC | 0.881 | 0.899 | 0.909 | 0.913
PP-3/4 | LCC | 0.898 | 0.917 | 0.925 | 0.929
RMSE | 1.061 | 0.961 | 0.914 | 0.886

Table 5. Performance results by evaluating with the remain-
ing set of images

yielding the results in Table 5. This simple model was almost
as effective as the one proposed by Ma et al [4].

5. CONCLUSIONS

Our proposed ODU image quality analyzer delivers higher
SRCC values than IL-NIQE and NIQE on super-resolved im-
ages. The OA method uses an optimal feature set and a two-
stage regression model proposed by Ma et al [4], providing
state-of-the-art prediction performance. Additionally, it was
shown that the features extracted from paired products coeffi-
cients were able to produce high quality results. The evalua-
tion phase of this study was based on the database in [4] and
as shown in [15], the performance of the OA metrics could be
affected by the data set used in the training phase. Towards
improving study of this issue, we are developing a subjective
study of super resolved images, which will be presented in
future works.
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