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ABSTRACT

Block partition structure is a critical module in video coding scheme
to achieve significant gap of compression performance. Under the
exploration of future video coding standard by the Joint Video
Exploration Team (JVET), named Versatile Video Coding (VVC),
a new Quad Tree Binary Tree (QTBT) block partition structure has
been introduced. In addition to the QT block partitioning defined
by High Efficiency Video Coding (HEVC) standard, new horizontal
and vertical BT partitions are enabled, which drastically increases
the encoding time compared to HEVC. In this paper, we propose
a fast QTBT partitioning scheme based on a Machine Learning
approach. Complementary to techniques proposed in literature to
reduce the complexity of HEVC Quad Tree (QT) partitioning, the
propose solution uses Random Forest classifiers to determine for
each block which partition modes between QT and BT is more likely
to be selected. Using uncertainty zones of classifier decisions, the
proposed complexity reduction technique is able to reduce in average
by 30% the encoding time of JEM-v7.0 software in Random Access
configuration with only 0.57% Bjøntegaard Delta Rate (BD-BR)
increase.

Index Terms— Video Compression, VVC, QTBT, JEM,
Complexity Reduction, Machine Learning, Random Forest

1. INTRODUCTION

The Joint Video Exploration Team (JVET) has been recently
investigating several new coding solutions under the Joint
Exploration Model (JEM) software [1, 2] to show the benefits of
developing a new standard called Versatile Video Coding (VVC)
with coding capability beyond High Efficiency Video Coding
(HEVC) [3]. These new coding tools already increase the coding
efficiency by up to 40% compared to HEVC [4]. However, bitrate
savings come with a significant complexity increase of 10 times the
HEVC encoding time in Inter coding configuration. This complexity
increase may interfere with the deployment of VVC standard on
embedded platforms and live applications.

At the encoder side, computationally expensive tools have been
added especially for the partitioning scheme, i.e. choosing the
appropriate encoding block size for each part of the image. In JEM
each frame is split into equal size blocks, called Coding Tree Unit
(CTU). Each CTU is then split recursively with Quad Tree Binary
Tree (QTBT) partitioning [5]. Fig. 1 illustrates the QTBT partition
of a CTU, with Binary Tree (BT) partition modes in green and
Quad Tree (QT) partition mode in red. Possible BT partition modes
are Binary Tree Horizontal (BTH) and Binary Tree Vertical (BTV)
that allows splitting a Coding Unit (CU) in two equal rectangles
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horizontally and vertically, respectively. When BT partition mode
is used on a CU, QT partition mode is no longer allowed. In JVET
Common Test Conditions (CTC) [6], only 3 successive BT partitions
are allowed. Enabling BT partition modes improves compression
efficiency at the cost of considerable increase of partitioning scheme
complexity and, consequently, of the encoding time.

In HEVC, the most common way to reduce the computational
complexity of the encoding process is to reduce the QT partitioning
scheme by testing less partition configurations. These solutions
leverage intermediate encoding information (RD cost, co-located
partitions, etc.) [7, 8], texture characteristics [9, 10], motion
divergence [11, 12], Machine Learning (ML) and Deep Learning
methods [13–15]. More recently, some solutions have already
investigated the complexity reduction of QTBT partitioning scheme.
Authors in [16] and [17], use Convolution Neural Networks (CNNs)
to predict a depth description of QTBT partition of the CTUs.
Wang et al [18] use Motion Divergence Field and gradient of
luminance samples to model the Rate Distorsion (RD) cost and then
prune unlikely branches of the QTBT partitioning tree. Complexity
reduction techniques in [16], [17] and [18] are able to reduce
encoding time by 42%, 32% and 50% for 0.65%, 0.52% and 1.3% of
Bjøntegaard Delta Rate (BD-BR) increase in average, respectively.

In this paper, we propose a ML solution based on Random
Forest (RF) classifiers to speed up the QTBT partitioning scheme.
RF classifiers are trained off-line for every CU size to avoid
expensive exploration of the partition mode classified as unlikely.
The classifier estimates the partition mode between QT and BT that
should be tested. Therefore, the proposed solution is complementary
with QT partitioning complexity reduction techniques proposed for
HEVC [8] [19]. To limit the RD loss induced by misclassification,
uncertainty zones are introduced for the classifier decisions. When
classifier decision is included in the uncertainty zone, both QT and
BT partition modes are tested. The proposed complexity reduction
solution is able to reach on average 30% encoding time saving with
only 0.57% BD-BR increase.

The rest of the paper is organized as follows. Section 2
goes through background of RF classifiers and presents the binary
classification problem. Section 3 investigates the training dataset
constitution. The training process to build RF classifiers is described
in Section 4. Section 5 presents the experimental results. Finally,
Section 6 concludes this paper.

2. RANDOM FOREST FOR QT VS BT CLASSIFICATION
PROBLEM

2.1. Background on Random Forests

Classification by RF [20] is a classical method in ML. RF classifiers
predict the value of a target variable, named class, from values of
several input variables, named features. RFs methods bag many
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(a) QTBT partition of a CTU.
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Fig. 1: Quad Tree Binary Tree in JEM. In red QT partition mode and
in green BT modes.

single little-correlated decision trees and gather the results from all
the trees to make a decision. Decision trees are constructed by a
recursive partitioning of the data set into subsets called nodes. At
each node, a threshold that achieves optimal separation of the classes
is selected among one of the input features. In this work, the output
of the RF classifier is the class receiving the most votes from the
decision trees.

To de-correlate one tree of the RF to another, the nodes of
the decision trees are created using random subsets of features.
Moreover, each decision tree is trained on a random subset of the
training dataset. By de-correlating trees, RF classifiers achieve a
better trade-off between correct classification and training data over-
fitting compared to a single decision tree classifier.

2.2. Binary Classification: QT vs BT Partition Mode

To find CTU partition that achieves the best RD performance, the
encoder recursively explores all possible partition modes. This
process is called full Rate Distorsion Optimization (RDO) search.
For each CU, the encoder computes a RD cost of the whole CU.
Then RD costs of QT and BT partition modes are computed, BT
partition modes being composed of BTH and BTV partition modes.
The encoder selects the partition mode that minimizes the RD cost.

To reduce the number of tested partition modes, a binary RF
classifier (introduced in Section 2.1) is used to classify each CU in
QT or BT partition mode. The proposed binary classifier, called
QTvsBT , is trained off-line. When classification decision is QT
partition mode, the RDO process is applied on QT partition mode
and BT partition modes are ignored. When classification decision
is BT partition modes, QT partition mode is ignored and RDO
processes are applied on both BT partition modes.

3. TRAINING DATASET CREATION

Let a training instance be the entity composed of the chosen set of
input features and the associated output class. This section details
the steps of the training dataset creation, i.e. the set that contains all
the training instances used to build the RF classifier.

3.1. Training Setup

The effectiveness of ML is highly linked to the diversity and
relevance of the training dataset. To characterize a video content,
Spatial Information (SI) and Temporal Information (TI) metrics are
used [21]. The SI estimates the amount of spatial details while
the TI measures the quantity of motion in the video sequence. To
cover a wide range of content types, the training dataset is extracted

from 10 training sequences spanning a large range of SI and TI
space and distributed across 6 classes (A1, A2, B, C, D, E). The
training sequences are included in JVET CTC [6]: DaylightRoad
and Campfire (class A1), Traffic (class A2), BasketballDrive and
BQTerrace (class B), Flowervase and BQMall (class C), BQSquare
and Keiba (class D), Johnny (class E).

The training instances are extracted from training sequences
encodings carried-out with the JEM-v7.0 in Random Access
(RA) configuration at the 4 Quantization Parameter (QP) values
considered in this work: 22, 27, 32 and 37. For the CUs, the
corresponding output class is defined as the optimal partition mode
selected after full RDO process. A separate training dataset is
created for different CU sizes including 128×128, 64×64, 32×32
and 16× 16.

Sequences with high resolution and high frame rate provide
more CTUs to the training datasets compared to the low resolution
and low frame rate sequences. To avoid being biased by these
particular training sequences, the datasets used for training are
composed of a fixed number of CTUs by training sequence.
Furthermore, to reduce the problem of data imbalance, the training
dataset for every CU size is composed randomly with the same
amount of instances classified into QT output class and BT output
class.

3.2. Features Evaluation and Selection

In our application, a feature is a property of the CU used to determine
which partition mode between QT and BT should be selected. This
subsection presents the evaluation and selection of features.

3.2.1. Evaluated Features

Based on related works, the features used by the RF classifiers are
computed relying on texture of pixel luminance samples and motion
divergence. In the following, motion divergence is considered
through Motion Divergence Field (MDF), MDF being the array of
Movement Vectors (MVs) of every 4x4 pixels blocks. The MVs
point to the closest reference frame in term of temporal distance.

Evaluated features are divided into 3 categories: features
computed on whole CU, features based on sub-quarters of the CU
and features based on inconsistency among CU sub-quarters.
Features computed on the whole CU are the following:

• QP: Quantization parameter used to encode the sequence.

• VarPix: Variance of luminance samples.

• Grad: Gradients in horizontal (gradx) and vertical (grady)
directions of the luminance samples (2 features).

• RatioGrad: ratio of gradients gradx
grady

.

• VarMv: |σ2
MVx + σ2

MVy| with σ2
MVx and σ2

MVy respectively
variances of horizontal and vertical MVs of MDF.

• MaxDiffMv: maximum 1-norm distance between MVs
of MDF, noted mv, and their mean, noted mv, as in
Equation (1).

MaxDiffMv = max
mv∈MDF

(||mv −mv||1)

= max
mv∈MDF

(|mvx −mvx|+ |mvy −mvy|)
(1)

Features based on sub-quarters of the CU are the following:

• QuarterVarPix: VarPix on 4 sub-quarters (4 features).

• QuarterVarMv: VarMv on 4 sub-quarters (4 features).
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• QuarterMaxDiffMv: MaxDiffMv on 4 sub-quarters (4
features).

For any feature f of current CU, f1 is the feature computed on
top-left sub-quarter, f2 on top-right, f3 on bottom-left and f4 on
bottom-right. Let δH(f) and δV (f) be Horizontal Inconsistency
(HI) and Vertical Inconsistency (VI) as defined by Equation (2).

δH(f) = |f1 − f2|+ |f3 − f4|
δV (f) = |f1 − f3|+ |f2 − f4|

(2)

The aim of HI and VI is to highlight which rectangular parts of the
CU have the highest differences. HI is linked to BTH partition mode
and VI to BTV partition mode. Features based on inconsistency
among sub-quarters of the CU are the following:

• InconsPix: HI and VI of mean, variance and gradients-ratio
of luminance samples (6 features).

• InconsMv: HI and VI of mean and variance of MDF (4
features).

• DiffInconsPix: difference between HI and VI for luminance
based features (3 features).

• DiffInconsMv: difference between HI and VI for MDF based
features (2 features).

3.2.2. Feature Selection

Mutual Information (MI) measures the decreasing of entropy H
of a class C when the feature F is known. MI is expressed as
MI(F,C) = H(C) − H(C|F ). For the current study, the feature
evaluation is conducted with MI as metric. Fig. 2 gives the MI of all
evaluated features according to the CU size.
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Fig. 2: Mutual Information of Features for different CU sizes.

Results show that features based on texture have higher MI
than features based on MDF, independently of CU size. In other
words, features based on texture are more relevant than features
based on MDF to estimate which partition mode between QT and
BT is to be tested, independently of CU size. Therefore, a unique
set of features is selected for all CU sizes. The set of features is
composed of the 19 features with the highest MI: QP, VarPix, Grad
(2 features), RatioGrad, MaxDiffMv, QuarterVarPix (4 features),
InconsPix (6 features) and DiffInconsPix (3 features).

4. CLASSIFIERS TRAINING PROCESS

The training process consists in building the classifier through
maximizing the ratio of correct classification on the training dataset.
In addition to correct classifications, the losses of RD performance
introduced by misclassification are considered in this work.

4.1. Weight Training Instances with RD Cost Errors

To evaluate the impact of misclassification on the encoding
efficiency, the RD errors εRD caused by a misclassification is
introduced. RD error when the optimal partition mode A is chosen,
while B is the partition mode selected by the encoder after a full
RDO process, is defined by Equation (3).

εRD(A|B) = 100 · RDA −RDB

RDB
(3)

RDA and RDB are the RD costs resulting of full RDO process
for partition modes A and B, respectively. In our case, (A,B) ∈
{(QT,BT ), (BT,QT )} and RDBT = min(RDBTH , RDBTV ).

Fig. 3 gives the average of RD error for the two types of
misclassification, εRD(QT |BT ) and εRD(BT |QT ), according to
the CU size. Results are averaged across 4 video sequences
(BasketballDrive, BQMall, Flowervase, Johnny) and four QP .

BT|QT QT|BT0

10

20

30

RD
 (%

)

128x128
64x64
32x32
16x16

Fig. 3: Average RD misclassification error, by type of
misclassification and by CU size.

Fig. 3 shows that εRD(BT |QT ) is higher for large CUs (128×
128 and 64 × 64) than small CUs (32 × 32 and 16 × 16). In other
words, (BT |QT ) misclassification has in average stronger impact
on RD cost of large CUs compared to small CUs. Indeed, when BT
partition mode is selected on large CUs, QT partition mode is no
longer available, as detailed in Section 1. Combined with the limit
of 3 successive BT partitions, fine grain partitioning is no longer
achievable.

On the other hand, εRD(QT |BT ) is higher for small CUs than
for large CUs. This is due to the fact that rectangular BT partition
modes offer more partitioning shapes than square QT partition mode
on small areas in the frame.

To conclude, the impact on RD cost according to
misclassification type depends on CU size. From this observation, a
εRD weighting of training instances is added in order to minimize
the sum of εRD induced by misclassification. Note that the weights
are needed only during the training process, and not when the
trained model is used in encoding process.

4.2. Classification Rates

Let the classification rate be the percentage of correct classification
given by the 4-fold cross-validation on the training dataset. Table 1
describes the average classification rates of the QTvsBT classifier,
across the training sequences for the four considered QP and
according to the CU size.
Table 1: Correct classification (in %), for every CU size category.

128× 128 64× 64 32× 32 16× 16 Average

QTvsBT 69 70 67 60 67

The classification rates are between 60% and 70% according to
the the CU size. In the literature, classification rates of techniques
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using ML to reduce the complexity of the QT partitioning in HEVC
are close to 80% [23, 24].

In order to limit RD efficiency losses induced by
misclassification, uncertainty zones of classification are introduced
for each binary classifier. In the uncertainty zones both BT
and QT partition modes are tested. A score value, deduced
from the votes of individual decision trees, is used to build the
uncertainty zones. The associated score Score(A) corresponds
to the percentage of decision trees that predict the class A and is
defined as Score(A) = Nvotes(A)

Ntrees
.

Nvotes(A) is the number of trees voting for class A and Ntrees is
the number of trees constituting the RF classifier. Score(A) takes
values between 0 and 1. The closer Score(A) is to 1, the more
predominantly the RF classifier selects class A.

For our specific case of classification between two classes
QT and BT , as Nvotes(QT ) + Nvotes(BT ) = Ntrees,
then Score(QT ) + Score(BT ) = 1. Using this relation,
the classification decision of QTvsBT RF classifier is QT if
Score(QT ) > 0.5 and BT otherwise (see Section 2.1).

An example of uncertainty zone is illustrated in red on Fig. 4.
Uncertainty zone is the range [0.5 − dS(BT ), 0.5 + dS(QT )] of
Score(QT ), with dS(BT ) and dS(QT ) fixed thresholds included
in [0, 0.5]. In uncertainty zone, both BT and QT partition modes are
tested by the encoder.

0.5
Score(QT)

0.5+dS(BT)0.5-dS(QT) 10

BT QTBT and QT

Fig. 4: Uncertainty Zone for QTvsBT classification.

Based on an off-line study, dS(QT ) and dS(BT ) thresholds
are fixed by resolution and CU size using training sequences to
limit misclassification. Using uncertainty zones, 98% of training
sequences CUs are either correctly classified or included in the
uncertainty zone, limiting RD efficiency losses.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

To conduct the experiments, 18 video sequences (3 by class)
not included in the training sequences (see Section 3.1)
are used: CatRobot1, ParkRunning3, ToddlerFountain, Traffic,
SteamLocomotiveTrain, NebutaFestival, Cactus, RitualDance,
Kimono, RaceHorsesC, PartyScene, BasketballDrill, ParkScene,
KristenAndSara, FourPeople, BlowingBubbles, RaceHorsesD and
BQSquare. The experiments are conducted under the CTC [6] for
RA configuration at the four QP values. The proposed complexity
reduction solution is implemented in JEM-v7.0. In order to limit
the encoding time, JEM-v7.0 encoder compares the RD cost of
the whole current CU with those of the BTH and BTV partition
modes to prune the QT partition mode. As our solution does not
compute all the RD costs of the BT partition mode, this condition
is removed in the experiments. The performance of our complexity
reduction solution is evaluated by measuring the trade-off between
RD efficiency using the BD-BR [25] and encoding time reduction
∆T , defined by Equation 4.

∆T =
1

4

∑
QPi∈{22,27,32,37}

TO(QPi)− TR(QPi)

TO(QPi)
(4)

TO(QPi) and TR(QPi) are the original (encoded with full RDO
process) and reduced time spent to encode the video sequence with
QP = QPi, respectively.

5.2. Performance Evaluation of the Proposed Solution

Table 2 details the performance in terms of encoding degradation
BD-BR(%), encoding time reduction ∆T (%) and time overhead θ
of the proposed complexity reduction solution with respect to the
performance obtained by disabling the BT partitioning modes. The
results are averaged by class across the 18 test sequences.

Table 2: BD-BR(%), ∆T (%) and θ%) averaged by video class.

Proposed Solution Disabled BT
partition modes

Video Class BD-BR(%) ∆T (%) θ(%) BD-BR(%) ∆T (%)

A1 + 0.85 30 0.07 + 6.5 81
A2 + 0.58 31 0.12 + 3.5 80
B + 0.7 30 0.09 + 6.9 80
C + 0.47 32 0.19 + 4.5 79
D + 0.36 27 0.55 + 3.3 75
E + 0.49 31 0.22 + 3.6 78

Average + 0.57 30 0.21 + 4.7 79

BT partition modes are added to QT partition mode defined in
HEVC standard to improve compression efficiency at the cost of
increased encoding time. Therefore, disabling BT partition modes
sets an upper bound of complexity reduction. On the one hand,
Table 2 shows that the proposed solution is able to reduce the
encoding time by 30% for a BD-BR increase of 0.57% in average.
On the other hand, results show that disabling BT partition modes
increase the BD-BR of 4.7% for a complexity reduction ∆T of
79% in average. Compared to disabling BT partitioning modes,
the proposed solution is able to divide by 8 the BD-BR increase,
dividing by 2.5 complexity reduction in average.

Related works [16], [17] and [18] presented in Section 1 reduce
the encoding time of 42%, 32% and 50%, with BD-BR increase of
0.65%, 0.52% and 1.3%, respectively. However, [16, 17] techniques
are based on CNNs to reduce the encoding time without always
specifying their implementations, while CNNs are known to have
high computational overhead. The complexity overhead θ of our
proposed solution, including in the encoding time reduction, is
between 0.07% and 0.55% of the encoding time. This performance
confirms the lightweight of our approach and highlights that RFs
classifiers consume few computing resources, which is a key point
to use this solution in a real-time or embedded framework.

6. CONCLUSION

This paper presents a ML solution based on RF classifiers to speed
up the QTBT partitioning scheme. RF classifiers are trained off-
line to determine which partition modes between QT and BT is
more likely. The features used by the RF classifiers are computed
based on texture of pixel luminance samples and motion divergence.
Experimental results have shown that the proposed solution reduces
the encoding time by 30% on average for a BD-BR increase of
0.57%. The complexity overhead of our solution represents 0.21%
of the encoding time in average, highlighting that RFs classifiers
consume few computing resources. Future work will go further by
adding classifiers to estimate which partition mode between BTH
and BTV should be selected.
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