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ABSTRACT

In this paper, we propose an optimal modeling framework for image
compression using EMM (Epanechnikov Mixture Model).
Epanechnikov Kernel and its correlated statistics are basement of
our Epanechnikov Mixture Regression (EMR). In our scheme, the
stochastic processes of the pixel values are modelled as an EMM
with K experts in three-dimensional space and then we use EMR to
search for the optimal solution, whose parameters are determined
through EM (Expectation-Maximization) algorithm. In the process
of regression, the conditional density is the regression kernel
function. Experimental results show that the proposed scheme is
effective especially for the image with complex texture without
consuming extra bits compared to Gaussian Mixture Regression
(GMR).
Index  Terms—  Epanechnikov  Mixture Regression,
Epanechnikov Mixture Models, Epanechnikov Kernel, Gaussian

Mixture Regression, Image coding, Kernel Density Estimation

1. INTRODUCTION

Image compression has been an intense field with a lot of advances
coming up these years. However, as for kernel based statistical
modeling methods of image coding, not much progress has been
made. Kernel regression is a state-of-the-art theory widely applied
in image processing [1], and our purpose is to encode images with
the kernel-based mixture of experts (ME) model for linear regression
[2]. Therefore, kernel function plays a significant role in our scheme.
Though Gaussian kernel function is frequently used in Bayesian
framework [3], there are also several existing kernel functions such
as epanechnikov, triangular, uniform, biweight, triweight and cosine
[4]. Other than Gaussian kernel, Epanechnikov kernel has a
discontinuous distribution as well as a rapid slope [5]. Therefore, in
our paper we select Epanechnikov kernel function to accomplish the
proposed coding scheme. Our coding strategy is motived by sparse
steered mixture-of-experts regression (SMoE) by Verhack R [6],
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which assumes that image pixel values are instantiations of non-
linear or non-stationary random process that can be modelled by
spatially piecewise stationary Gaussian processes. As for
reconstructed image, a major disadvantage of the GMM based
compression is that it cannot well model the images with complex
texture. The goal in the paper is to exploit Epanechnikov kernel
function in mixture-model image coding in order to fill the gaps of
the space-continuous Gaussian Mixture Model (GMM) [7].

Epanechnikov kernel has already been used in mean-shift
algorithm [8][9][10], 3D point cloud robust registration algorithm
[11] and neural network [12], etc. We consult from mathematical
statistics and kernel density estimation to expand the theory of
Epanechnikov kernel [13][14]. In this paper, we provide an accurate
functional expression of Epanechnikov kernel, meanwhile we figure
out the marginal distribution, conditional distribution and the
conditional mean value of Epanechnikov kernel in three-
dimensional space. Under the Bayesian framework, image pixels are
assumed as local experts through Epanechnikov process with global
support. The encoder modeling task thus involves estimating the
parameters of the model. For our approach, we originally put the
three-dimensional Epanechnikov Mixture Model (EMM) into image
statistical modeling, which estimates the component centroid,
variances, together with the weight of each “expert”. The parameters
can be estimated from the training data by the Expectation-
Maximization (EM) algorithm [15]. All parameters are then passed
to the Epanechnikov Mixture Regression (EMR) that steers
regression with the kernel function and achieves the maximum
probability of amplitude towards each pixel location. The regression
kernel function in our method is the conditional probability
distribution of Epanechnikov kernel.

The rest of the paper is organized as follows: the specific theory
of Epanechnikov kernel and the statistics of Epanechnikov Mixture
Regression are given in Section 2. Coding approach is presented in
Section 3. Experimental results are shown and analyzed in Section
4. Finally, we draw a conclusion is in Section 5.

2. MIXTURE-OF-EXPERTS REGRESSION
USING EPANECHNIKOV KERNEL

2.1. Epanechnikov Kernel Density Estimation
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a random distribution at any point:
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where K(¢) is a multivariate kernel function satisfying the condition
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Then, the probability density distribution of three-dimensional
Epanechnikov kernel can be estimated by:
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where / is the univariate coefficient.
In our scheme, the probability density must be expressed by
covariance matrix as follows:
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where @ is a three-dimensional random variable (x, y, Z)T and

Hu= (ﬂx,y},,,uz)T is the mean value. X is a 3x3 covariance matrix.

In order to pave the way for conditional probability distribution,

it is necessary to deduce the marginal probability distribution of
Py, (@) which, in our model, is the joint distribution of (X,Y):
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where & is the two-dimensional random variable (x,y)" and

P, (0)=
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a=(t,4,) is mean value. R is a 2x2 covariance matrix.

In particular, the formulas presented are all among the intervals
of Z(o-w' X (p-w=1 and 2(3-4) R'G-q<1,

the function value is 0 otherwise.

while

2.2. Epanechnikov Mixture Regression

The principle of our regression is to optimize a vector Z according
to a vector (X,Y)eR?. In this paper, we define x as the horizontal
axis of an image as well as y as the vertical axis, and z is the grey

value at location ¢ and here comes the joint pdf p,,,(¢) € R*.
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component j respectively.
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represent the weight, center and covariance of the

Follow on, we work out the conditional probability distribution:
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Eq.7 is deduced by Eq.6. Regressing our Epanechnikov Mixture
Models means finding the optimal gray value at (X, )’) through the

conditional probability distribution (Eq.7). The parameters can be
estimated from the training data using the Expectation-
Maximization (EM) algorithm.

Finally, the conditional mean must be completed, which
indicates the intensity of gray value signal around the center of a
component:
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Mixing weights is the softmax function widely used in artificial
neural networks. It defines how important the role each 7,(x, )
plays:
a,;p,(9)

Zajpxy(a)

We can find from Eq.10 that the regression kernel function m(x, )
is with global support:
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The idea of our EMR is that the gray value at location (X, ) is
approximated from the weighted sum over all K mixture components

(Eq.10). After finding every optimum parameter set ®;, we put it
into m;(x,y) (Eq.8)and w;(x,») (Eq.9), which are further used to

recover the estimated image by Eq.10.
3. PROPOSED CODING APPROACH

The image is divided into blocks in our experiment. As for each
block, the first step is to get the image energy entropy, through which
we determine the number of models for certain image. Image Energy
Entropy reflects the amount of average information in an image. The
observed variable is gray value and we calculate the energy entropy
Hofit[16]:

255

H=Y plogp, (11)

i=0
where p; represents the percent of pixels whose gray value is 7. In

16x16 block, the piecewise sections of H are [0,2.5], [2.5,2.8],
[2.8,3.2] and [3.2,4]. As for 32x32 block, they are [0,1.1], [1.1,1.5],
[1.5,2], [2,2.4], [2.4,3] and [3,4]. We define more models for the
sections with larger A and in addition we allocate different groups
of model-numbers towards the sets of H-sections on experiments at
different bitrates.
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Then, we step into Epanechnikov Mixture Regression for each
block. The Expectation-Maximization (EM) algorithm, which is
initialized by k-means++, is used to estimate the parameters set

®, =(a;,4;,Z;)for every component J . After obtaining the optimal
parameters, we calculate 7 to reconstruct the modeled block. The

reconstructed image can be obtained by putting the modeled blocks
together.

The parameters that need to be encoded are «; , three
T
parameters in u; :( Hy sy s ,uzj) and six parameters of Zyyx ,

vy, s Zxz o Zyy . Zvz,, 272 Thus, each component has ten
parameters for encoding. Blocksizes of our experiments are 16x16
or 32x32. Table.1 gives the allocation of bits for these parameters.

Table 1: The range of bits consumed in each parameter

bits/model a; M Z; (o
16x16 | EMM 7 [4,8] [6,13] 77
GMM 7 [4,9] [6,14] 79

32x32 | EMM 7 [5,9] [8,13] 88
GMM 7 [5,9] [8,13] 87

4. EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Experimental results

In our experiments, we perform 7 iterations and set the threshold
value 107® in EM algorithm for the regression of the conditional
probability function (Eq.7). We implement the framework using
Gaussian Mixture Regression as well in order for comparison. In
addition, we also consider a mixture method, which is referred to the
Optimal PSNR Scheme (OPTPS). In OPTPS, each image block is
encoded utilizing both EMM and GMM respectively. Then we can
get two modeled results, between which we choose the block with
better PSNR. In this way, a relative increase of image quality is
achieved.

Grayscale images Baboon, Barbara, Camera, Columbia, Lena
and Peppers are used in the test. The relationship between the bit
consumption and the reconstructed image quality of three coding
schemes, EMR, GMR, and OPTPS is shown in Fig.1, from which
we can easily observe the improvement of the coding efficiency
based on our Epanechnikov Mixture Model. What is more
considerable is the absolute predominance of OPTPS for all test
images. From the observation on the overall trend of six test figures,
we can see that at low bitrates, the number of models for encoding a
block is not sufficient enough to show any details, and both
regression methods suffer from lack of components. As a result,
there is similarity between EMR and GMR at low bitrates. What’s
more, the curve trend mainly indicates that a considerable
compression gain is achieved especially for high bitrates.

Fig.2, Fig.3 and Fig.4 depict the contrast of details among EMR,
GMR and OPTPS with key areas noted. Fig.2 shows that EMR
outperforms GMR in dealing with image with complex details.
Baboon has wild beard, as for which, more messy details have been

reconstructed by EMR. In Fig.3, from the reconstruction of the
pillars’ color change, we can know that EMR can show a dominant
change towards image regions that having distinct span of gray scale
while GMR ignores the transition.
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Fig. 1. The bpp-PSNR map comparing GMR, proposed EMR and
OPTPS

272 —m—or1es
e EMR
268 —a—cuR

(c) GMR
Fig.2. Experimental results on Baboon at 1.41 bpp

(d) OPTPS
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(b) EMR

(c) GMR (d) OPTPS
Fig.3. Experimental results on Columbia at 0.75 bpp

(c) GMR
Fig.4. Experimental results on Lena at 0.56 bpp

(d) OPTPS

As a representative image for human, Lena is a wonderful
example as shown in Fig.4, from which we can know our scheme
can also be a good approach for reconstructing figure details. In
Fig.4, we can easily see the difference between (b) and (c) in eye
region and hair region. Above all, we can find the excellent

performance of EMR on non-flat images, especially complex texture.

As for the complexity of EMR, the running time of EMR is about
1.2 to 1.7 times longer than that of GMR. The OPTPS we present
shows the most comprehensive advantage over both EMR and GMR
coding. We mainly focus on improving the model and consider less

about coding optimization after modeling in this paper, therefore the
whole image coding performance is not yet comparable to the state-
of-the-art image coding frameworks, such as JPEG and HEVC.

4.2 Model analysis

The model-based coding method we proposed has its particular
advantage, which results from the original Epanechnikov kernel. In
this part, we preliminarily explore the correlation between the
coding regression and the three-dimensional Epanechnikov kernel.
Fig.5 illustrates that how is the proposed model influence the image
quality by modeling a 32x32 pixel block of Lena at 1.0 bpp in
comparison to Gaussian Mixture Model at the same rate. Fig.5(b)
and Fig.5(c) derive from the modeling with 12 models, from which
we can see the better effect for EMM. Fig.5(d) and (e) are the top
views of three-dimensional mixture models. From the two figures,
we can see that three-dimensional Epanechnikov kernel has a tighter
distribution than three-dimensional Gaussian kernel under the same
data set. The concentrated-distribution ellipsoids of EMM can
enhance the correlation of regression, while GMM has a more
incompact distribution which may not present a better representation
of data changes

(a) Original (b) EMR (c) GMR
30
25
5
5 10 15 20 25 30
(d) Top view of EMM (e) Top view of GMM

Fig.5. Mixture model analysis
3. CONCLUSION

In this paper, we explore the possibility of using an
Epanechnikov-kernel based regression on image compression.
Ahead of all, we enrich the theoretical basis of Epanechnikov kernel
and then make good use of it in image coding. At higher bitrates, the
reconstructed image quality of the proposed method is superior to
GMR based coding, and as we notice, EMR coding has the
advantage that it can reconstruct at least the baseplate for texture-
complicated image. With the advantages of EMR and GMR coding,
our proposed OPTPS can get the maximization of the image quality.
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