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ABSTRACT

Video transrating has become an essential task in streaming
service providers that need to transmit and deliver different
versions of the same content for a multitude of users that
operate under different network conditions. As the transrat-
ing operation is comprised of a decoding and an encoding
step in sequence, a huge computational cost is required in
such large-scale services, especially when considering the
use of complex state-of-the-art codecs, such as the High
Efficiency Video Coding (HEVC). This work proposes an
early-termination method for complexity reduction of the
HEVC transrating based on Random Forests, which use fea-
tures obtained from the HEVC decoding process to accelerate
the coding tree decisions during the re-encoding process. Ex-
perimental results show that the proposed method achieves
an average transrating time reduction of 47.09% at the cost of
a negligible bitrate increase of 0.292%.

Index Terms— HEVC, transrating, transcoding, Random
Forests.

1. INTRODUCTION
Video compression has become fundamental to allow both
storage and transmission of such kind of content, especially
with the introduction of high spatial resolution and increased
frame rates. With the aim of allowing compatibility among
devices, services, and applications that transmit/receive digi-
tal videos on the internet, there is a need to convert encoded
videos to different standards (called heterogeneous transcod-
ing) or to change their characteristics while keeping the en-
coding standard (called homogeneous transcoding). Homo-
geneous transcoding can be employed to modify the video
resolution, to insert watermarks in the video, and to change
the encoded-video bitrate, for example.

Due to the increasing use of video streaming services such
as YouTube and Netflix, transcoding for bitrate adaptation,
also called transrating, has become essential, since such ser-
vices are required to provide several versions of the same
video with different bitrates to meet different user require-
ments and network capabilities. As transrating requires long

This work was supported by the Coordenação de Aperfeiçoamento de
Pessoal de Nvel Superior - Brasil (CAPES) - Finance Code 001 and also by
FAPERGS and CNPq Brazilian research support agencies.

processing times, the operation is usually performed offline
and the several bitstream versions of a video are stored in
servers for future requests. Often-accessed contents bene-
fit from this strategy, since they are promptly available for
users. However, rarely-accessed videos are also stored in
the server in multiple versions, wasting valuable storage re-
sources. Thus, transrating for videos seldom accessed could
be performed on-the-fly, i.e., as they are requested.

High Efficiency Video Coding (HEVC) is the current
state-of-the-art video coding standard, launched in 2013 by
the Joint Collaborative Team on Video Coding (JCT-VC) [1].
HEVC reduces the bitrate of encoded videos by 40% on
average [2] while keeping the same image quality of its
predecessor, the H.264/AVC [3] standard. However, such
compression rates are achieved with a significant increase in
terms of computational effort, which can reach up to 500% in
comparison to H.264/AVC [4].

Recent solutions found in the literature propose the use
of machine learning techniques to reduce the complexity of
HEVC, such as [5–8]. However, the proposed solutions lack
in some aspect: either they do not achieve significant time
savings, or they introduce non-negligible losses in encoding
efficiency. In [9], a simple statistical-based heuristic was pro-
posed, outperforming competing solutions in terms of encod-
ing efficiency and time savings.

This paper presents a low-complexity HEVC transrating
method focusing on high encoding efficiency and reduced
computational cost. The proposed method targets video
streaming providers for which transcoding time and energy
consumption are relevant, given the enormous amount of
information that must be processed. The method is based
on a machine learning approach in which the HEVC tran-
srating process inherits a set of features from the reference
(High Bitrate – HBR) bitstream and quickly predicts the best
frame partitioning during re-encodings of the same sequence
with lower bitrate (LBR), speeding up the transrating without
causing significant impact on compression efficiency.

2. PARTITIONING IN HEVC TRANSRATING
HEVC introduced flexible frame partitioning structures to al-
low better coding efficiency for various types of content. Each
frame is partitioned into square Coding Tree Units (CTUs),
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Table 1. Average CU correlation between HBR and LBR

HBR CU size LBR CU size
64x64 32x32 16x16 8x8

64x64 (Depth 0) 93.09 5.73 0.86 0.29
32x32 (Depth 1) 41.81 53.92 3.70 0.56
16x16 (Depth 2) 19.10 22.18 56.08 2.61

8x8 (Depth 3) 13.99 16.64 21.55 47.79

whose size is typically 64x64. Then, each CTU is partitioned
into one or more Coding Units (CUs) in a quadtree-based re-
cursive process, in which a 64x64 CU is split into four smaller
CUs, until the minimum CU size (8x8) is reached. The best
partitioning is the one with smallest rate-distortion (RD) cost.
Since RD-cost requires prediction and residual coding to be
computed, the computational complexity involved in this de-
cision process is extremely high [4].

In an HEVC transrating method, an HBR bitstream en-
coded under a certain bitrate is decoded, generating a video
output that is re-encoded under a different target bitrate.
Therefore, transrating is even more complex than encoding
due to the extra decoding step. However, information from
the HBR bitstream can be used to guide the encoding de-
cisions in the LBR encodings. Table 1 shows the average
correlation between CU depths of the HBR and the LBR bit-
streams. For HBR, the bitrate was obtained with base QP 22,
whereas the LBR bitrate was calculated according to the bi-
trate ratios for testing, shown in Table 2. In fact, the chances
of a CU being re-encoded with the same size or larger is
always higher than 93%.

Previous works that propose methods to reduce the com-
plexity of HEVC transrating make use of this correlation.
In [6], the authors present a method for fast HEVC spatial
re-scaling, which uses the number of CU partitions in the
high-resolution video to limit the partitioning decision while
encoding the low-resolution video. In [7], the authors trained
a machine learning model using the random forest algorithm
that can predict whether a CU should be divided or not based
on the co-located blocks in the video bitstream with the
largest resolution (i.e., differently from this work, [7] focuses
on transcoding for resolution adaptation). In [9], a simple
strategy that inherits directly the CU partitioning information
from the decoding step to speed up the re-encoding step is
proposed. The authors in [8] propose a CU early termination
solution based on three methods that use features such as
motion vectors, average depths and RD costs of co-located
CUs to speed up the transcoding process.

These related works achieve significant time savings but
incur in non-negligible losses in terms of encoding efficiency.
The method proposed in this work achieve significant time
saving at the cost of tolerable encoding efficiency losses.

3. RANDOM FORESTS FOR CU SIZE DECISION

As most of the HEVC encoding complexity is caused by
frame partitioning decisions [4], an efficient approach that

Table 2. Analysis, training and test set configuration

Codec HEVC Model 16.4 (HM 16.4)
Configuration Random Access

Base QP* 22
Bitrate Ratios for Training 5% to 95% in steps of 5%
Bitrate Ratios for Testing 80%, 60%, 40% and 20%

Training Sequences
ToddlerFountain, Rollercoaster,
BasketballDrive, KristenAndSara,
SlideEditing

Testing Sequences

Tango, CatRobot, TrafficFlow,
DaylightRoad, Kimono, ParkScene,
Cactus, BQTerrace, FourPeople,
Johnny, SlideShow, ChinaSpeed

*used to obtain the target bitrate of the HBR bitstream

allows skipping the exhaustive RD-based tests during the
encoding process is essential. In this work, we propose the
use of random forests to predict which modes can be skipped
without compromising encoding performance.

Random forests are a class of machine learning techniques
for general-purpose systems that address classification solu-
tions and are less prone to overfitting compared to decision
trees [7]. They consist of multiple decision trees constructed
systematically by pseudo-randomly selecting subsets of fea-
tures [10]. If a relevant set of input variables is used in the
training process, random forests models can achieve high pre-
diction accuracy at the cost of a small overhead in terms of
computational resource usage.

3.1. Model Training and Evaluation

Table 2 shows the training setup of random forests including
the video sequences, the base Quantization Parameter (QP),
and the target bitrates used to transrate videos and extract the
features/labels. The encodings followed the Common Test
Conditions (CTC) [11] recommended by JCT-VC.

Before training the random forests, HBR and LBR bit-
streams were generated using the reference HEVC encoder
[12]. The target bitrate of the HBR encoding was assigned as
the average bitrate obtained using a QP of 22. Then, the LBR
target bitrates were obtained as a percentage of the HBR one,
which will be referred to as bitrate ratio in the remainder of
this paper. For training data, LBR bitstreams were encoded
with bitrate ratios between 5% and 95% in steps of 5%.

The training data sets were then built using information
extracted from the HEVC decoder. Data obtained from the
HBR bitstream were used as input features, whereas the LBR
CU depths were used to define the labels. Several decoding-
domain variables were considered as features, such as predic-
tion mode, partition size, and QP. The labels were assigned to
Split, when the CU depth of the HBR bitstream is greater than
that of the LBR one, and to Unsplit otherwise. Using this ap-
proach, one data set was built for each CU depth: 0 (64x64),
1 (32x32) and 2 (16x16). Note that depth 3 (8x8) does not
require a data set because it is the maximum depth supported
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in HEVC (i.e., 8x8 CUs cannot be split).
After building the training data sets, the importance of

each decoding feature to predict the CU partitioning in the
LBR re-encodings was assessed. In this work, the Gini Im-
portance (GI) was used, which is the default metric of the
Scikit-Learn toolkit [13]. The Gini Importance, calculated
using (1), measures how much a given feature reduces the
likelihood of an incorrect classification for a new instance.

GI(feat) = Imp(Y )−R(feat) (1)

R(feat) =
∑

v∈V als

P (feat = v) ∗ Imp(Y |feat = v) (2)

Imp(Y ) =
∑
y∈Y

P (Y = y) ∗ (1− P (Y = y)) (3)

In (1), the GI is computed as the impurity in the output
variable Y (in our case, the Split/Unsplit variable) that re-
mains when a given feature (feat) is known. Features with
high GI are the ones that minimize the remainder R in equa-
tion (2), which is interpreted as a weighted sum of the impu-
rity of the output variable for each value of the attribute. The
obtained GI values of the extracted features for each data set
is depicted in Fig. 1. Note that the GIs are similar across all
classifiers. The bitrate ratio achieved the highest GI among
all features, which is expected, as the encoder tends to favor
less CU partitionings as the target bitrate becomes smaller.

Using the data sets as input, random forests were finally
trained using the Scikit-Learn library [13]. The training pa-
rameters were left in their default value, except for the number
of estimators (i.e., the number of decision trees in the forest)
in each model. Forests with 5, 20, 50, 100, 200 and 1000
trees were trained, but cross-validation accuracy did not im-
prove significantly with more than 20 estimators. Therefore,
we defined a maximum of 20 trees to reduce prediction com-
plexity while keeping efficient model performance. The num-
ber of estimators used in each data set as well as the 5-fold
cross-validation accuracy, are shown in Table 3. The models
achieved accuracy values between 81.5% and 92.2%.

3.2. Proposed Early Termination Algorithm

An overview of the proposed method is shown in Fig. 2,
where each forest is used to decide if the CU evaluation
should stop at the same depth of the input HBR bitstream
(unsplit CU), or be further partitioned (split) for evaluation.

The input features are obtained when decoding the video
and the classifier decisions are then used to build CU depth
maps. These maps are then used to limit the CU partitioning
decisions in the LBR re-encodings. For example, if a CU that
was encoded at depth 1 in the HBR bitstream is classified as
Split, the maximum depth allowed for it in the LBR encod-
ing will be 2. Therefore, encoding time is reduced whenever
the maximum depth is smaller than 3, since it means that the
CU splitting process will be early terminated and the RD cost
calculation for its lower levels will no longer be necessary.

Fig. 1. Gini importance of features used in the RF models

Fig. 2. Proposed early termination transrating scheme

4. EXPERIMENTAL RESULTS
The same setup presented in section 3 was employed to obtain
the experimental results, except for the video sequences that
are different from those to guarantee unbiased results. The
testing sequences are recommended in the CTC [11] and are
listed in the last row of Table 2. Notice that the 12 sequences
belong to three spatial resolution classes: HD (1280x720
and 1024x768 pixels), Full HD (1920x1080 pixels) and 4K
(4096x2160 and 3840x2160 pixels).

As shown in Table 2, the HBR bitstreams were encoded
with the average bitrate obtained in a prior encoding using QP
22, and the LBR cases were defined as 80%, 60%, 40%, and
20% of the HBR bitrate. To evaluate the proposed method in
terms of compression efficiency and transrating time, the orig-
inal tandem transrating process (i.e., with no modifications on
both decoder and encoder) was first executed for the 12 test
sequences and the four LBR cases, yielding 48 transcodings.
The proposed low-complexity transrating scheme was also
executed for the 12 video sequences, taking the same four
LBR target bitrates. Thus, the obtained results are compar-
isons between the proposed transrating strategy and the orig-
inal tandem transcoder.

4.1. Time Savings
Table 4 shows average time savings (TS) and compression ef-
ficiency (BD-rate) results achieved by the proposed solution,

Table 3. Characteristics of each trained model

Data set Number of
Estimators Precision (%)

Depth 0 (64x64) 20 81.50
Depth 1 (32x32) 10 85.49
Depth 2 (16x16) 10 92.19
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Table 4. Experimental results
Resolution Sequence BD-rate (%) TS (%)
4096x2160 Tango -0.681 50.7
3840x2160 CatRobot -2.423 31.5
3840x2160 TrafficFlow -1.426 32.8
3840x2160 DaylightRoad 0.499 34.1
1920x1080 Kimono 0.764 55.2
1920x1080 ParkScene 0.601 43.9
1920x1080 Cactus 1.219 38.1
1920x1080 BQTerrace 0.979 37.9
1280x720 FourPeople 0.730 64.5
1280x720 Johnny 0.634 69.1
1280x720 SlideShow 1.844 67.8
1024x768 ChinaSpeed 0.763 37.7

Average 0.292 47.09

as well as a metric correlating BD-rate with TS (BD/TS). TS
values show that the strategy is capable of reducing transrat-
ing time significantly, with an average reduction of 47.1% in
comparison to the original tandem transcoder. Average results
per spatial resolution show that HD sequences achieved the
largest TS results, reducing transrating time by 59.77%. The
sequence that achieved the greatest reduction in transrating
time is Johnny, which reached an average TS of 69.1%. This
sequence comprises a large static background area composed
mainly of 64x64 CUs in the HBR bitstream. This allows the
transrating process to be significantly simplified in CU spit-
ting decisions, which leads to the large TS results observed.
The worst results in TS occur for the CatRobot video, which
still managed to achieve an average TS of 31.5%.

4.2. Compression Efficiency

Bjontegaard Delta (BD) metrics [14] were used to evaluate
the encoding efficiency of the proposed method for all video
sequences. BD-rate is usually calculated based on the bitrate
and the Peak Signal-to-Noise Ratio (PSNR) obtained when
encoding video sequences under four different QPs. In this
work, however, QP cannot be fixed during the full encoding
process, since it is adjusted by the rate control algorithm to
achieve the target bitrates. Thus, the bitrate and PSNR values
obtained when transrating to the four LBR are used in this
work to calculate BD-rate.

The obtained BD-rate results are presented in Table 4 and
they show that the employment of the proposed method re-
sulted in an average compression efficiency loss of 0.292%
in comparison to the original tandem transcoder. This is a
very small drawback considering the achieved time savings,
as represented by the ratio between BD-rate and TS values
(BD/TS). For clarity purposes, the ratio is scaled by a con-
stant factor of 100 in Table 4. For each percentage point in
TS, a BD-rate increase of only 0.00266% is noticed. The sat-
isfactory compression efficiency results are explained by the
accuracy of the random forest models previously presented.

It is important to note that three video sequences pre-
sented negative BD-rate values, which means that the com-

Table 5. Comparison with related works
Reference BD-rate (%) Time Savings (%) BD/TS
Praeter [7] 5.60 61.0 9.180
Yang [8] 2.26 55.0 4.109

Shroeder [6] 0.76 38.4 1.979
Bubolz [9] 0.88 45.4 1.938
Proposed 0.29 47.1 0.266

pression efficiency of the proposed solution was better than
the original transcoder in some cases. This happens because
the encoding decisions performed by the original transcoder -
based on the Rate-Distortion Optimization (RDO) algorithm
- are locally optimal, i.e., they consider only the effect on the
CU being encoded. However, the encoding of the next CUs
is also affected by such decisions, since they change refer-
ence pixels used in predictions. This way, even though the
proposed strategy sometimes incurs in non-optimal local de-
cisions for a CU, such decisions end up improving the global
encoding efficiency in subsequent encodings steps.

4.3. Comparison with Related Works
Four state-of-the-art solutions [6–9] were selected for com-
parison with the proposed method. Table 5 shows a compari-
son between them in terms of BD-rate, TS and BD/TS (x100).
The solution proposed by [7] reaches the best results in terms
of time savings (61%), but incurs in large compression effi-
ciency losses, reaching an average BD-rate increase of 5.6%.
This leads to the worst scenario in terms of BD/TS (9.18).
On the other hand, the best result in terms of compression
efficiency is achieved by [6], with a BD-rate increase of only
0.76%. However, the solution leads to the smallest TS results,
reducing transcoding time in only 38.4%.

Among all compared works, [9] presents the best trade-
off between compression efficiency and time savings. The
strategy reaches an average BD/TS of 1.938, which means
that a BD-rate increase of only 0.01938% is noticed for each
percentage point in TS. However, as shown in Table 5, the
solution proposed in this paper also surpasses such results.

5. CONCLUSIONS

This paper presented a method for complexity reduction of
the HEVC transrating process based on random forests. The
proposed models use information gathered from the HEVC
decoding process to accelerate the recursive CU decision pro-
cess during the re-encoding and is capable of reducing pro-
cessing time with small pr negligible effects in encoding effi-
ciency. An average transrating time reduction of 47.9% was
achieved in comparison to the original tandem transcoder, at
the cost of a small BD-rate increase of only 0.2923%. The
proposed strategy is especially useful for large-scale video
streaming services that employ online transrating, thus requir-
ing multiple transcodings for bitrate adaptation upon user re-
quest.
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