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ABSTRACT 
 
A Gaussian Mixture Model (GMM)-based framework for image 
compression is proposed in this paper. The image is predicted 
using GMM whose parameters are estimated using common 
Expectation-Maximization (EM) algorithm and encoded with fixed 
length bits. We introduce a new GMM Model Optimization (GMO) 
measure to select the optimal number of models and avoid local 
optimum of EM at the same time. The encoding cost of the residual 
and parameters are considered in GMO which is demonstrated to 
be near concave and effective. A parameter dictionary is designed 
to utilize the correlation of the parameters to improve the coding 
efficiency. The residual between the original image and the GMM 
image is encoded using High Efficiency Video Coding (HEVC) 
intra coding. Experimental results show that our method performs 
better than HEVC. 
 

Index Terms—Gaussian Mixture Model, GMM Model 
Optimization, Expectation-Maximization, Parameter Dictionary, 
Image Compression 
 

1. INTRODUCTION 
  
With the explosion growth of the image and video data today, it is 
more significant to design a more efficient framework for image 
coding. JPEG [1] uses Discrete Cosine Transform (DCT) and 
JPEG2000 [2] uses wavelet transform to utilize the correlation in 
the image. The intra standard of HEVC [3] predicts the blocks with 
35 different modes to encode an image.  

Studies have shown that GMM can fit any kind of probability 
density function (pdf) well with enough number of models [4]. 
Likewise, GMM can fit the correlation of the pixel information, 
which is the reason we try to utilize GMM in our coding scheme. 
GMM has been used to classify different kinds of photograph and 
distinguish the background [5]. But few use GMM to fit the pixel 
information itself to encode images.  

Our work is motivated by the efforts of using Steered 
Mixture-of-Experts (SMOE) in image compression [6], which put 
forward the idea of using 3-D Gaussian steering kernels with 
global support. It has better performance when comparing with 
JPEG at low bitrates. The authors of [6] also utilize GMM for 
color image coding in [7].  
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There are many technical difficulties when using GMM to 
compress images. Firstly, GMM itself is a clustering method 
without supervision [8]. For unsupervised clustering, the certain 
number of models is not easy to determine in the initialization 
stage. Secondly, the common EM algorithm which is widely used 
in GMM may suffer from local optimum. Thirdly, GMM utilized 
in a coding approach should take the cost of residual and 
parameters into consideration when selecting the optimal number 
of models. To achieve an efficient coding, GMO needs to be able 
to determine the optimal number of models and avoid local 
optimum of EM algorithm.  

The purpose of our work is to design an optimized image 
compression approach based on GMM.  
 

2. PROPOSED COMPRESSION SCHEME 
 
The block diagram of the proposed method is shown in Fig.1. 
 

 
Fig. 1. The block diagram of the encoder and decoder. 
 

In our design, the image is firstly transformed into YUV 4:2:0 
formats and processed into blocks. The processing of YUV 
channels is same. The blocks are predicted using GMM. A 
common EM algorithm initialized using K-means algorithm is 
used to get the parameters of the models. And then GMO is used to 
select the optimal number of models. After that, a parameter 
dictionary is introduced to reduce the encoding cost of parameters. 
The residual will be scaled and defined as residual block. Finally 
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all residual blocks are reconstructed and encoded by HEVC intra 
coding.  
 
2.1. Prediction using Gaussian Mixture Model 
 
In multivariate normal distribution, a random vector can be well 
predicted based on a known random vector when the two random 
vectors are dependent. Therefore, Gaussian Mixture Model (GMM) 
can be used to model a data set. The parameters of these Gaussian 
models can be estimated using EM algorithm. We consider the two 
location variables (the row coordinate and the column coordinate 
of a pixel) and the gray value of the pixel of an image as a three-
dimensional random vector, which is denoted by idata . Assume 

the training data T
=1{ }i iData = data  has joint probability density as 

follows. 
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where T  is the number of pixels in the image, iRow  is the row 
coordinate of the ith  pixel while iCol  is the column coordinate, 
K  is the number of models, iG  is the gray value of the ith  pixel , 

jLµ  is the mean of all iL  in the jth  model, µ
jG  is the mean of all 

iG  in the jth  model. And jCov  is the covariance matrix of the 

jth  model. jα  is the ratio of the pixels belonging to the jth  
Gaussian model, which is calculated by dividing the number of 
pixels in the jth  Gaussian model by the number of all pixels in the 
image. 

In multivariate normal distribution, the probability density 
function of a multivariate with dimension p + q  can be factorized 
as: 
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where |Gµ L is the conditional mean. 
Accordingly, equation (1) can also be written as: 
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where ( )jest L  is the conditional mean and 2
jσ  is the conditional 

variance. And we can get the conditional mean and the conditional 
variance using the knowledge of mathematical statistics [9]. 
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where ( )jest L  is also the estimated gray value assuming that it 

belongs to the jth  model, and L  is the location of the pixel to be 
estimated.  

Equation (4) is used to predict the gray value of the pixel with 
the known location for single Gaussian model. To reconstruct the  
image, we need two mean values in 

jLµ , the mean value in µ
jG , 

four covariance values in 
j jL LCov , two covariance values in 

j jGLCov , and one covariance value in 
j jG GCov  for one Gaussian 

model. Generally there are more than one Gaussian model for 
using GMM to predict an image. Every Gaussian model has its 
main "territory", and it can affect the main territories of other 
Gaussian models.  

GMM assumes that every model influences the gray value of 
the pixel at different level which can be determined by a weight 
coefficient. The products of the estimated values and weight 
coefficients are sum up to get the gray value of a pixel as follows.  
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And ( )jw L  is the weight coefficient which shows the 

influence ratio of the jth  model to all models.  
In this way, we can get the whole image reconstructed by 

GMM parameters.  
 
2.2. GMM Model Optimization 
 

The proposed GMM Model Optimization (GMO) is designed 
for determining the optimal number of models and avoiding local 
optimum of EM algorithm.  

The image block can be predicted using GMM with different 
number of models, which may take the range from 1 to 32 in 
general. GMO is performed after the prediction step.  

GMO is given by: 
 { }arg max ( )     (1 32)

k
F k k≤ ≤                      (7) 

where ( )F k is defined by: 
[ ]( ) ( ) ( )kF k SSIM fm k fr k′′= − +                  (8) 

kSSIM ′′ , ( )fm k and ( )fr k are defined as follows. 
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 kSSIM  is the structural similarity index 

(SSIM) [10] value when k  models are used to predict the block 
and maxSSIM  is the maximal kSSIM . kSSIM ′′  represents the 
normalized kSSIM  in equation (8). kSSIM  is always smaller than 
1 in case that GMM cannot reconstruct details which are too 
complex. Thus, a block of size 32 32×  can be adequately 
predicted with at most 12 models as the extreme case according to 
a large number of experiments. maxβ  denotes the maximal number 
of models for blocks with different sizes of the extreme case which 
increases with the growth of  M N× . M N×  denotes the size of 
the block we used. T  is the number of pixels and iG  is the gray 
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value of the ith  pixel. ˆ ( )k iG L  is the predicted gray value which 
can be calculated using equation (6). 

The three parts of equation (8) are designed to be normalized 
meaningfully to the range from 0 to 1. kSSIM ′′  is considered as the 
gain in GMO while other parts represent the possible cost in 
further coding. ( )fm k  denotes the cost of the parameter encoding 
related to k  and it is considered as 1 when maxβ  models are used 
to predict the block. In addition, ( )fr k  denotes the average of the 
normalized difference of the pixels between the original block and 
GMM block which indicates the possible cost of residual encoding.  
Fig.2 and Table 1 are given to show the rationality of GMO.  
 

    
(a)                  (b) k=4             (c) k=18            (d) k=22  

Fig. 2. An example of the GMM block: (a) original block (b) (c) (d) 
GMM block (k is the number of models). 

 
Fig.2 is a block at the lower right corner of the test image 

Lena to show the details of the reconstructed GMM block. The size 
of the image block is 128×128 here to make the difference of 
GMM blocks more obvious. We can see from Fig.2 (b) (c) (d) that 
the most similar GMM block comparing with the original block is 
Fig.2 (d). However, from Table 1, we can see that GMO proposed 
here chooses Fig.2 (c) as the best situation with the maximal ( )F k  
instead of Fig.2 (d) in case that the cost of the extra parameters has 
been considered. 
 
Table 1. The comparison of the GMO components with different 
number of models. 

Items 
k  ( )F k  kSSIM ′′  ( )fm k  ( )fr k  

4 0.8333 0.8909 0.0208 0.0368 
10 0.8960 0.9570 0.0521 0.0089 
14 0.9001 0.9799 0.0729 0.0069 
16 0.8747 0.9662 0.0833 0.0082 
18 0.9008 0.9978 0.0938 0.0032 
22 0.8823 1.0000 0.1146 0.0031 
28 0.8429 0.9918 0.1458 0.0031 
32 0.8313 0.9999 0.1667 0.0019 

 
It can be seen from Table 1, ( )F k  is near concave when k  is 

regarded as the independent variable. 18k =  is the extreme point 
for this block. It is worth noting that (16)F  is smaller than (14)F  
abnormally. kSSIM ′′  becomes smaller even more models are used 
in prediction and ( )fr k  becomes larger for suffering from local 
optimum. Thus GMO can recognize and avoid local optimum by 
decreasing ( )F k .  
 
2.3. Coding of parameters 
 
For each block, 5 bits are used to encode the number of models 
since the maximum number of models is 32. We use fixed length 
coding to encode parameters of each model, in which 7 bits for jα  

and 8 bits for the mean gray value. And the two mean location 
values will be encoded with several bits according to the size of the 
blocks which will be indicated at the beginning of the bit stream. 
For example, the row coordinate will be encoded with 5 bits if the 
height of the blocks is not larger than 32. The covariance matrix is 
symmetrical as shown in Fig.3. Therefore, there are only six 
numbers to be encoded. The covariance parameters are reserved as 
integers. We encode the covariance matrix with 8 bits for 00C , 8 
bits for 01C , 9 bits for 02C , 8 bits for 11C , 10 bits for 12C and 12 
bits for 22C  according to the numerical range of these parameters. 
Thus we need at least 80 bits for each model. 

00 01 02

01 11 12

02 12 22

C C C
C C C
C C C

 
 
 
  

 

Fig. 3. The covariance matrix. 
 

2.4. Parameter dictionary 
 
A parameter dictionary is used in our method to save the bits for 
parameters. Thus, the encoding of covariance parameters can be 
achieved by encoding the index of the dictionary. 

The single Gaussian model in GMMs may generate similar 
GMM blocks with fixed mean gray value and location of center. In 
this case, these corresponding Gaussian models can be considered 
the same. Therefore, in order to improve the coding efficiency, we 
intend to utilize the correlation between Gaussian models. These 
GMM blocks generated by single model are called model blocks 
here which can be tools to compare the Gaussian models.  

In the proposed method, we predict every block with GMM. 
All the GMM blocks and model blocks will be gotten firstly. The 
model blocks are compared using SSIM. It is assumed that when 
the SSIM is larger than 0.9, the model blocks are considered the 
same. Their corresponding covariance parameters can be replaced 
by each other. 

For the first image block, all the model blocks are compared. 
The parameters corresponding to the model blocks which are not 
repeated are collected into the covariance parameter dictionary. For 
the following image blocks, every model block is compared with 
the ones generated by the parameters in the dictionary. If one 
model block can find a similar one generated by the parameters in 
the dictionary, its covariance parameters need not to be encoded 
and only one index is needed. If the model block cannot match a 
similar one, the parameters are considered as a new dictionary 
tuple. After the complete iteration, we can get the parameter 
dictionary. The covariance parameters in the dictionary are 
encoded using fixed length coding as described in Section 2.3. 

The size of the dictionary is often not larger than 32. In this 
case, each model needs only 5 bits to encode the index of the 
dictionary instead of 55 bits for the covariance parameters. 
 
2.5. Coding of the residual image  
 
The residual between the original block and the GMM block with 
optimal parameters of models may have negative values. In order 
to encode the residual using HEVC intra coding, the residual is 
scaled to values from 0 to 255. The minimum value of the residual 
is encoded with 8 bits in order to recover the non-shift residual in 
the decoder. The scaled residual blocks of the whole image are 

1799



reconstructed to get the residual image, which is encoded by 
HEVC intra coding.  
 
2.6. The components of bit stream 
 
The components of the bit stream is shown in Fig.4.  
 

 
Fig. 4. The components of the bit stream. 
 

In summary, the encoded bit stream has mainly four parts.  
The first part is the header of the bit stream, in which 7 bits 

for the width of the block, 7 bits for the height of the block, 6 bits 
for the number of blocks in a column of the image and 6 bits for 
the number of blocks in a row. In this way, an image with the 
resolution of 8192×8192 at most can be processed by the proposed 
algorithm. 

The second part is the parameter dictionary. In this part, the 
size of the parameter dictionary is encoded first with 5 bits. With 
the certain size of the parameter dictionary, the following 
parameters encoded here can be decoded correctly. And the 
covariance parameters are encode with 55 bits as described in 
Section 2.3 for each tuple of the dictionary. 

The third part is the information of encoded GMM blocks. 
The number of models should be encoded with 5 bits first. Every 
model needs another 5 bits to encode the index of the dictionary. 
The encoded parameters except covariance are also in this part. 

The last part includes the encoded residual image and the 
encoded minima of the non-shifted residual which are encoded 
with 8 bits.  
 

3. EXPERIMENTS 
 
We compare the rate-distortion curves of the proposed method, 
SMOE and HEVC intra coding. For comparison with SMOE, the 
size of Lena is 512×512. Other test images has the resolution of 
256×256. The images are processed into blocks of size 64×64 in 
the experiments. The size of the block can be arbitrary in fact. All 
images are transformed into YUV 4:2:0 formats. 

The calculation of the bits per pixel (bpp) of the results is 
based on the 24-bit depth setting. PSNR is the average of the three 
channels of the decoded image.  

Fig.5 shows the rate-distortion curves of the three methods. 
The bpp range of the images takes from about 0.2 to 3 while PSNR 
is controlled lower than 55dB except Lena. The bpp range for Lena 
is the same as that in [7].  

The coding efficiency of HEVC is much better than SMOE in 
case that there is no extra coding method used which can be seen 
from Fig.5 (a). And it can be seen from both graphs, the proposed 
method has a comparable efficiency to HEVC or SMOE. It can 
also be concluded that the results of the images with large area of 
background like Swiss and Lake are better than the others. 

 Fig.6 shows the image and its partial enlargement of the 
output of decoding compared with HEVC for the image “Lena”. 
Our method can reproduce texture and color correctly compared 

with HEVC which can be seen from the partial enlargement of the 
area showed by a red rectangular box. 

 

 
(a) Lena 512×512               (b) Other images 256×256 

Fig. 5. The rate-distortion curves comparing SMOE in [7], HEVC 
and the proposed method. 

 

      
(a) Original image           (b) Proposed                 (c) HEVC 

             
(d) Original image           (e) Proposed                 (f) HEVC 

Fig. 6. The comparison of decoded images between the proposed 
method and HEVC.   
 

4. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we proposed an image compression scheme based on 
GMM. Our method introduced GMO to determine the optimal 
number of models used in GMM and avoid local optimum of EM 
algorithm. In this way, the optimal GMM parameters with best 
coding efficiency can be determined. Meanwhile, the parameter 
dictionary can obviously reduce the bits used to encode the 
parameters.  

 So far, our work has focused on the problems when GMM 
used in image compression. The variable-length encoding can be 
considered to improve the coding efficiency of the parameters in 
the future work. 

1800



5. REFERENCES 
 

[1] N. N. Ponomarenko, V. V. Lukin, K. O. Egiazarian, et al. 
"Adaptive visually lossless JPEG-based color image 
compression," in SIViP, vol. 7, no. 3,  pp. 437-452, 2013. 
 

[2] C. Christopoulos, A. Skodras, and T. Ebrahimi, "The 
JPEG2000 still image coding system: An overview," IEEE 
Transactions on Consumer Electronics, vol. 46, no. 4, pp. 
1103-1127, Nov 2000. 
 

[3] F. Belghith, H. Kibeya, M. A. B. Ayed, N. Masmoudi, "Fast 
coding unit partitioning method based on edge detection for 
HEVC intra-coding," in SIViP, vol. 10, no. 5, pp. 811–818, 
2016. 
 

[4] S. Cherifa and R. Messaoud, "New technique to use the 
GMM in speaker recognition system (SRS)," in ICCAT, 
Sousse, pp. 1-5, 2013. 

 
[5] Dongxiang Zhou and Hong Zhang, "Modified GMM 

background modeling and optical flow for detection of 
moving objects," in ICSMC, vol. 3, pp. 2224-2229, 2005. 

 

[6] R. Verhack, T. Sikora, L. Lange, G. Van Wallendael, and P. 
Lambert, "A universal image coding approach using sparse 
steered Mixture-of-Experts regression," in ICIP, Phoenix, 
AZ, pp. 2142-2146, 2016. 

 
[7] R. Verhack, S. Van De Keer, G. Van Wallendael, T. Sikora, 

and P. Lambert, "Color prediction in image coding using 
Steered Mixture-of-Experts," in ICASSP, New Orleans, LA, 
pp. 1288-1292, 2017. 

 
[8] B. Kolewe, A. Haghani, R. Beckmann, and T. Jeinsch, 

"Gaussian mixture regression and local linear network model 
for data-driven estimation of air mass," IET Control Theory 
& Applications, vol. 9, no. 7, pp. 1083-1092, April 2015. 

 
[9] J. H. Zhou, C. K. Pang, and W. Yan, "Gaussian mixture 

model for new fault categories diagnosis," in ETFA, 
Limassol, pp. 1-6, 2017. 

 
[10] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, 

"Image quality assessment: from error visibility to structural 
similarity," IEEE Transactions on Image Processing, vol. 13, 
no. 4, pp. 600-612, April 2004.  

 
 

 

1801


		2019-03-18T10:57:31-0500
	Preflight Ticket Signature




