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ABSTRACT
We developed a DCT domain image enhancement method
that not only improves human perceived quality, but also over-
comes artifacts that inherently occur from image signal pro-
cessing. Exploiting an human visual perception model, we
developed a perceived contrast measure in the DCT domain.
Based on the measure, we designed a filter to make images
seem to be vivid as well as finely resolved without boosting
up noise. And after investigating how blocking and ringing
artifacts occur during processing image signals, we devised
a scaling filter that avoids such artifacts. The objective and
subjective evaluations verify that the proposed method con-
sistently produces competitive performances.

Index Terms— Image Enhancement, Perceived Contrast,
DCT

1. INTRODUCTION

Many psychological and physiological studies have described
human visual perception in the frequency domain. The works
in [1] represented the perceived sensitivity of an image as per-
ceived contrast and developed a contrast measure at each fre-
quency component. Human visual preference is higher for the
image quality with higher perceived sensitivity [2]. And the
more perceptually contrasted image signals are more vivid as
well as finely resolved so that they seem to be higher resolu-
tion [3]. Therefore, the image enhancement method should
be developed as a way of increasing the perceived contrast.

Besides human perception, we should treat the issues in-
herently induced during signal processing. The typical issues
include block and ringing artifacts [4]. The ringing artifact
occurs when the direction of the image signal processing di-
rection is not in parallel with the edge directions. The block
artifact occurs in block processing, such as the Discrete Co-
sine Transform (DCT). To avoid the artifacts, the processing
method is designed to adapt to local image signal properties.

The local contrast enhancement methods are roughly cat-
egorized by the spatial, frequency domain and learning-based
methods. In the spatial domain, Kou et al. [5] and Deng [6]
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increased local contrast with achieving satisfactory enhance-
ments for well-dedicated images. But, they produced unnat-
ural or over-saturated results in non-dedicated images. As
an frequency domian method, Celik [7] conducted the DCT
over a whole and increases the sharpness of texture by em-
phasizing higher frequency components. The multi-band en-
ergy scaling method (MESM) in [8, 9] recursively scaled up
local contrasts which are measured from frequency band en-
ergy ratios. These frequency methods produce robust texture
sharpness. However, whole image DCT of Celik is next to im-
possible in real system, and the MESM causes blocking and
ringing artifacts. Recently, the learning-based methods have
been developed [10] with data base which is generated man-
ually or by the existing enhancement methods. Therefore, in
order to generate the ground-truth enhanced images, the most
advanced enhancement method that does not use a learning
algorithm must be developed.

In this study, we developed the DCT domain enhance-
ment method considering both human perception and signal
processing aspects. In regard to human perception, the pro-
posed method measures the perceived contrast that is higher
at higher sensitive frequency components and recursively
updates the frequency components to increase the perceived
contrast. With respect to image signal processing, we avoid
the ringing artifact by tuning the enhancement directions and
reduce the block artifact by not modifying low frequency
components. Consequently, the proposed image enhance-
ment consists of the filters that improves human perceived
quality and prevents artifacts. Objective and subjective tests
verify that the proposed method provides reliable and superior
performances for various high-resolution images.

2. IMAGE ENHANCEMENT ORIENTED TO HUMAN
PERCEPTION

2.1. Human Perceived Contrast in the DCT Domain

Previous studies have modeled human physiological sensitiv-
ity as the contrast sensitivity function (CSF) [11] in DCT do-
main such as

CSF (u, v) =
1

4
·
[

1

ϕuϕv
· exp(0.18 · ω(u, v))
1.33 + 0.11 · ω(u, v)

]
(1)
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where

ϕp =

{ √
N for p=0,√
N/2 otherwise.

Denoting the viewing distance and pixel pitch as vd and P,
the spatial frequency ω(u, v) in actual viewing conditions is
convertible from the DCT frequency as follows [11]:

ω(u, v) =
1

2Nθ

√
u2 + v2 and θ = 2 · arctan( P

2vd
). (2)

The background energy against the DCT-frequency com-
ponent F (u, v) is the accumulation of energy whose frequen-
cies are lower than (u, v) [1], [8]. That is, the background
energy B(u, v) at (u, v) is calculated as

B(u, v) =
∑
p

∑
q

|F (p, q)|2,
√
p2 + q2 <

√
u2 + v2. (3)

Then, since humans perceive better the frequency compo-
nents having higher CSF values and higher energy compared
to the background energy, we devised the DCT-domain PC
measure in following way:

PC(u, v) =
|F (u, v)|2.4

CSF (u, v)−2 +B(u, v) + |F (u, v)|2
. (4)

2.2. Enhancement of Human Perceived Contrast (PC)

In order for an enhanced image to have better visual qual-
ity than the original image, the perceived contrasts of the en-
hanced image are higher than those of the original image.
That is, the enhanced perceived contrast, PC(u, v) must be

PC(u, v) > PC(u, v). (5)

By substituting PC(u, v) and PC(u, v) with (4), the enhanced
DCT coefficient, F̄ (u, v), is related to F (u, v) as follows:

F̄ (u, v) > R(u, v) · F (u, v) (6)

where

R(u, v) =

{
CSF (u, v)−2 + B̄(u, v) + |F̄ (u, v)|2

CSF (u, v)−2 +B(u, v) + |F (u, v)|2

}1/2.4

.

Since B(u, v) and B̄(u, v) are dominant over |F (u, v)|2 and
|F̄ (u, v)|2, respectively, R(u, v) is well approximated as

R(u, v) ≈
{
CSF (u, v)−2 + B̄(u, v)

CSF (u, v)−2 +B(u, v)

}1/2.4

.

(7)

Introducing the coefficient scaler, λ(u, v)(> 1), F̄ (u, v)
would be obtained as follows:

F̄ (u, v) = λ(u, v) ·R(u, v) · F (u, v). (8)

In texture images, the energy at middle and high frequency
components is large, leading to the background energy

B̄(u, v) dominating CSF (u, v)−2. Then, R(u, v) becomes
large at the middle and high frequency components. Con-
versely, in plain images having low energy at the middle
and high frequency components, CSF (u, v)−2 dominates
B̄(u, v), leading to R(u, v) being almost 1 over the entire
frequency range. So, R(u, v) enhances texture images and
does not evoke noise in plain images.

3. SIGNAL ADAPTIVE COEFFICIENT SCALING

3.1. Signal Energy Distribution Adaptive Scaling

Occurrences of block artifact depend on local image signal.
The edge images having high low frequency energy require
wide low frequency ranges to avoid the blocking artifacts,
whereas the texture images having small low frequency en-
ergy allow narrow low frequency ranges. Thus, the frequency
components in the low frequency range should not be modi-
fied according to energy distribution in frequency domain.

In [12], the energy distribution is defined as energy ra-
tio(ER) of low, middle and high frequency as follows:

ER =
EL + EM

EH .

(9)

where EL, EM and EH are low, middle and high frequency
energy, respectively, which are defined in [12].

Unlike the existing methods fixing low frequency range,
we adjusted the low frequency range from the ER. We em-
pirically chose the LR to achieve the maximum enhancement
effect while avoiding the block artifact, in the following way:

LR =

 ⌊N/7⌋, for 0 ≤ ER < 15
⌊N/4⌋, for 15 ≤ ER < 30
⌊N/3⌋, for ER ≥ 30

.

(10)

In order to suppress block artifacts, we fixed the coefficient
scaler to be 1 for the frequency components in LR, that is,
λ(u, v) = 1 for

√
u2 + v2 < LR.

The DCT coefficients should be scaled appropriately to
features of the frequency components. The coefficient scaler
should increase up to middle frequency range to emphasize
sharpness, and decrease at the high frequency range so as not
to boost noise. It is also necessary to control the enhance-
ment strength in accordance with local signals. When the ER
is low, images are likely to be plain images and should be
rarely enhanced. Conversely, since images with higher ER
are closer to texture, the images are to be more enhanced to
achieve better sharpness. Satisfying these demands, we mod-
ified the Butterworth function so that the coefficient scaler,
λ(u, v), and enhancement strength, α, are

λ(u, v) = 1 + α ·
√
u2 + v2/(2N)

1 + {
√
u2 + v2/(2DN)}8

(11)

and
α =

αmax

1 + exp{−0.1 · (ER − 10)}
+ 1
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where D adjusts the noisy high frequency range. empirically,
we set D = 0.65.

3.2. Signal Direction Adaptive Scaling

Real image signals are often mixed with non-directional and
directional image signals. The plain or texture are usually
the non-directional signals and enable full enhancement effect
by scaling up frequency components in all directions. The
edge is a typical directional signal and needs the directional
scaler in parallel to their directions to avoid ringing artifacts.
Therefore, we develop the coefficient scaler to be composed
of the non-directional and directional parts.

For non-directional image, the non-direction scaler λND

avoiding block artifacts is

λND(u, v) =
1,

√
u2 + v2 < LR

1 + α ·
√
u2 + v2/(2N)

1 + {
√
u2 + v2/(2DN)}8

,
√
u2 + v2 ≥ LR

(12)

When an image signal directs vertically, the DCT coef-
ficients at the first row dominate. In horizontal signals, the
DCT coefficients at the first column dominate. Therefore, the
magnitudes of the DCT coefficients at the first column and
row are equivalent to the gradients at each direction [13]. Let
∇ver, ∇hor be the vertical and horizontal gradients, respec-
tively. Then, the gradients of each direction are

∇ver =
1

Γ

N−1∑
u=0

|F (u, 0)|, ∇hor =
1

Γ

N−1∑
v=0

|F (0, v)| (13)

where

Γ =
N−1∑
u=0

N−1∑
v=1

|F (u, v)| − |F (0, 0)|.

To steer the coefficient scaling direction to be parallel with
the edge direction, we decomposed the scaler to horizontal
and vertical directions and then weighted each direction gra-
dient to each direction scaler. So, we invented the directional
scaler λD(u, v) in following way:

λD(u, v) =
∇ver

∇
· λ(u) + ∇hor

∇
· λ(v) (14)

where λ(ℓ) is the one-dimensional scaler. From (11),

λ(ℓ) =


1, ℓ < LR/

√
2

1 + α ·
√
2ℓ/N

1 + ·{
√
2ℓ/(DN)}8

, ℓ < LR/
√
2.

(15)

To maximize enhancement performance while reducing
artifacts, we regulated the ratio between the non-directional
and directional coefficient scaler. Since the images having

Table 1. Image quality scores using CPBD
Spatial Domain Frequency Domain

Original Unsharp CAIDE MESM CWM Proposed
Aerial 0.437 0.541 0.538 0.568 0.588 0.686

Bar 0.682 0.780 0.760 0.811 0.797 0.812
Boat 0.223 0.358 0.454 0.413 0.486 0.613

Cross Walk 0.510 0.724 0.778 0.741 0.800 0.850
Market 0.457 0.654 0.702 0.678 0.772 0.811
Square 0.419 0.552 0.598 0.616 0.657 0.689
Tango 0.669 0.795 0.783 0.806 0.843 0.862

Fountain 0.385 0.500 0.530 0.557 0.593 0.680

larger ∇ contain more directional signals, ∇ could be a proper
barometer estimating the ratio. Borrowing the optimal frame-
work [14], we designed the signal adaptive coefficient scaler,
λ(u, v), in terms of ∇ in following way:

λ(u, v) =
∇

∇+ ϵ
· λD(u.v) +

ϵ

∇+ ϵ
· λND(u, v) (16)

where ϵ is the fuzzy threshold. We empirically set ϵ = 0.25.
Therefore, the proposed method consists of signal adap-

tive scaling and perceived contrast elevating parts as follows:

F̄ (u, v) = λ(u, v) ·R(u, v) · F (u, v)

= Signal Adaptive Coefficient Scaling

· Human Perception Elevation · F (u, v)

(17)

4. EXPERIMENTS AND DISCUSSIONS

We compared the proposed method and recently developed
local contrast enhancement methods including the unsharp
masking [6], content adaptive image detail enhancement
(CAIDE) [5], multiband energy scaling method (MESM) [9]
and coefficient weight method (CWM) [7]. Test images are
ultra HD images in [15]. The block size of DCT is 16 × 16
that is usually used for HD and UHD.

For objective quality evaluation, we employed the cumu-
lative probability of blur detection (CPBD) metric. As the
metric score approaches to 1, humans perceive the image
quality to be better. Table 1 compares the CPBD scores of
the enhanced images. the proposed method consistently pro-
duces competitive performances for most of the test images.
In particular, the proposed method produces higher values
in images, such as Aerial and Market that contain the more
detail signals.

For the subjective evaluation, we followed the compari-
son judgment method of ITU-R BT.500-11 [16]. Images en-
hanced by each method were displayed at two identical ultra
HD(3840×2160) monitors in about 1.5 times monitor height.
20 subjects are invited to assign a score in range [-3, 3] to
image pairs. A score of -3 indicates that the left sequence
has significantly better visual quality than the sequence on
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(a) (b) (c)

(d) (e) (f)
Fig. 1. Enhanced images. (a) Original image, (b) by Unsharp, (c) by CAIDE, (d) by MESM, (e) by CWM, (f) by the proposed
method

Table 2. The MOS improvements of enhanced images
Spatial Domain Frequency Domain

Unsharp CAIDE MESM CWM Proposed
Aerial 0.150 -0.848 0.730 0.356 0.911

Bar 0.060 -0.208 0.080 0.063 0.080
Boat 0.254 -0.932 0.591 0.666 0.867

Cross Walk 0.140 -0.600 0.231 0.341 0.455
Market 0.132 -0.218 0.060 0.228 0.575
Square 0.041 -0.807 0.116 0.228 0.218
Tango 0.060 -1.182 0.063 0.183 0.254

Fountain 0.231 -0.667 -0.185 0.367 0.463

the right. A score of 3 signifies that the sequence on the right
has significantly better quality than the left.

Table 2 shows the MOS improvements of the enhanced
images. The proposed method outperformed other methods,
especially in Arial and Boat, which contain lots of textures.
Fig. 1 compares the images enhanced by each method. As
shown in Fig. 1.(f), the proposed method provides the most
natural and vivid pattern at wood board.

Fig. 2 analyzes how the proposed method enhances the
texture signals. For a better understanding, horizontal sig-
nals of enhanced images were plotted. As shown in the sig-
nals within the rectangles, the proposed method well intensi-
fies local variations, demonstrating how the proposed method
produces better sharpness. The signals in circles show gener-
ation of the tiny signals embedded at locally variant signals.
Such tiny signals make textures more finely resolved and so
produce images that humans perceive to be higher resolution.

Fig. 3 shows occurrence of the blocking, ringing artifact
and noise boost-up in images enhanced by MESM, CWM and
the proposed method. The MESM causes all artifacts because
it does not consider any properties of local signals. By tak-
ing DCT over the whole image, the CWM does not evoke
block and ringing artifact. But, due to the global processing,
it boosts noises and not quite realizable in real systems. On
the contrary, in accordance with the local signals, the pro-
posed method adjusts the low frequency range, scaling direc-

Fig. 2. Enhanced detail signals by the proposed method.

(a) (b) (c) (d)
Fig. 3. Artifact occurrences in enhanced images. (a) Origi-
nal images, (b) by the MESM, (c) by the CWM, (d) by the
proposed method

tion and enhancement strength, and so rarely evokes artifacts
as shown in Fig. 3.(d).

5. CONCLUSION

We devised a filter that increases perceived contrasts. The fil-
ter makes textures be vivid as well as finely resolved and does
not boost noise in plain images. We also designed a filter
that scales frequency energy adaptively to the characteristics
of image signals. In adaptation to energy distribution, the fil-
ter does not scale the low-frequency components to prevent
block artifacts and controls the enhancement strength not to
boost up noise. The filter also scales up the DCT coefficients
in parallel with signal direction to avoid ringing artifacts. The
cooperative integration of two filters enables the proposed en-
hancement method to not only improve image quality per-
ceived by human but also to overcome artifacts.
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