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ABSTRACT 

 

Guided image filter is one of the most commonly used ways 

to refine transmission maps. However, since this filter 

transfers the structures of the guidance image to the filtering 

output, when the guidance image is the input image itself, 

even small textures in the input image will cause the change 

of transmission, which is obviously contrary to the principle 

that transmission changes only when scene depth changes. In 

this paper, saliency detection, which simulates the way 

human eyes work, is introduced into haze removal to tackle 

the above issue. We first use saliency detection to capture 

the depth change regions, and then the saliency value is used 

as an adjustable factor to compute proper guidance images, 

in which most texture details are blurred but the depth 

change regions are remained clearly visible. Experimental 

results show that our method has great superiority in detail 

recovery compared with other state-of-art methods. 

 

Index Terms—Image restoration, haze removal, 

saliency detection, transmission refinement, guidance image 

 

1. INTRODUCTION 

 

Common phenomenon such as haze and fog, usually cause 

outdoor images to suffer from bad visibility, which greatly 

limits the image application in the later stage. Therefore, 

haze removal has become the first and indispensable step 

when we deal with these degraded images. 

Numerous valuable studies have been developed to 

remove haze component over the past decades. Early 

dehazing methods usually need multiple images or addition 

information of the same scene [1-4]. However, since this 

additional information is not available all the time, these 

dehazing methods are difficult to be widely used. Single 

image haze removal has drawn much attention in recent 

years. Fattal et al. removed the haze component by assuming 

that surface shading and scene transmission are locally 

uncorrelated [5]. Tan et al. assumed that haze-free images 

have higher contrast than images plagued by haze [6]. He et 

al.   proposed   dark  channel   prior   (DCP)  to  estimate   the 
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transmission and airlight [7].  Enlightened by DCP, Tarel et 

al. proposed a median filtering based method to achieve fast 

haze removal [8]. Meng et al. used boundary constraint and 

contextual regularization to recover high-quality images with 

fine details [9]. Sulami et al. acquired more accurate results 

benefitting from a better estimation of the orientation and 

magnitude of atmospheric light [10]. 

Saliency detection is an attractive topic of region-of-

interest extraction. Human visual system (HVS) is the basis 

of several saliency detection approaches, including Itti’s 

model [11], and the context-aware saliency model [12]. 

Some purely computational models were also proposed, 

such as the spectral residual [13], and the bottom-up model 

based on wavelet transform [14]. Besides, some researchers 

tried to combine the biological and computational models 

[15, 16]. Recently, region-based saliency detection has been 

a valuable perspective. Yan et al. proposed a hierarchical 

saliency detection model [17]. Cheng et al. extracted the 

salient region by a region contrast based model [18]. 

A lot of dehazing methods can first roughly estimate 

the primary transmission maps, in which one famous 

example is dark channel prior [7]. For these dehazing 

methods, guided image filter (GIF) [19], a filter which 

would transfer the structure of guidance image to filtering 

output, is widely used in the next step. To make the refined   

 
 (a)  (c) (e) 

 
 (b)  (d) (f) 

Fig. 1. Transmission refined by different guidance images 

and their corresponding dehazing results. (a) Input image. 

(b) Primary transmission map. (c) Refined transmission 

whose guidance image is the input image. (d) Refined 

transmission whose guidance image is computed by our 

proposed method. (e) Dehazing result recovered by (c). (f) 

Dehazing result recovered by (d). 
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transmission maps match the input hazy images as exactly as 

possible, those input hazy images themselves tend to be 

chosen as the guidance images. However, as shown in Fig. 1, 

one problem is that these refined transmission maps have 

exactly the same structures and details with the input images, 

which means even small textures in the input image will 

cause the change of transmission, and this is obviously 

contrary to the principle that transmission changes only 

when scene depth changes. (Dark channel prior is used to 

obtain the primary transmission map in this paper.) The 

above problem directly leads to the loss of detail in the final 

dehazing results generated by this kind of methods. 

In this paper, we introduce saliency detection to tackle 

the above issue. We first utilize saliency detection to capture 

the depth change regions. Then, the saliency value is used as 

an adjustable factor to generate proper guidance images. 

Figure 1 also shows our transmission and dehazing result. 

Compared with the results shown in Fig. 1 (c) and (e), our 

method suppresses the influence of texture information to 

the transmission map, and the final dehazing result shows 

more abundant details. 

There are three contributions in this paper. (1) Saliency 

detection, which simulates the way human eyes work, is 

introduced into haze removal. (2) We use saliency detection 

to capture the depth change regions for hazy images. (3) The 

proposed method generates proper guidance images for 

better transmission refinement based on the saliency factor. 

 

2. METHODOLOGY 

 

In this section, our saliency detection method and the way to 

generate proper guidance images will be explained in detail. 

Figure 2 shows the framework of our proposed method. 

 

2.1 The feature of proper guidance images 

 

Generally, the formation of a hazy image can be described 

as the following model [7]: 

    ( ) ( )* ( ) ( ( ))1I x J x t x A t x    (1) 

where I is the observed intensity, J is the scene radiance, t is 

the medium transmission and A is the global atmospheric 

light. From Eq. (1), we can see that the key to recover haze-

free images is to estimate correct transmission t and airlight 

A from the input hazy images. 

      Assuming that the atmosphere is homogenous, the 

transmission t can be further expressed as: 

             ( )( ) - d xt x e   (2) 

where  is the scattering coefficient of atmosphere, and d is 

the scene depth. This equation indicates that transmission is 

only dependent on scene depth when  remains unchanged.  

As mentioned, the refined transmission map is actually 

contrary to the above principle when the guidance image is 

the input image itself. Since one direct reason is that the 

textures in the guidance image are transferred to the 

transmission map, a natural idea is to blur the textures but 

keep the depth change region in the guidance image. 

Considering that human eyes can successfully capture depth 

change regions while ignoring the small texture information, 

we introduce saliency detection, which simulates the way 

human eyes work, to fulfill the above task. 

 

2.2 Co-occurrence histogram based saliency detection 

 

Co-occurrence histogram is a two-dimensional histogram 

which can capture global and local distribution of intensity 

values. The main idea of using co-occurrence histogram to 

identify salient regions is to find the local pixel pairs that 

rarely appear [20, 21]. These pixel pairs either represent 

local discontinuity or have global uncommonness, thus they 

usually have high saliency. Under hazy weather, outdoor 

images are degraded by the turbid medium, and suffer from 

great loss of detailed texture. Meanwhile, since a large part 

of the obtained image information is determined by the 

thickness of haze, which is related to the scene depth, the 

received information of the objects with the same depth 

tends to have a certain similarity. Therefore, for hazy images, 

the pixel pairs that have low occurrence frequency usually 

exist in the abrupt depth change regions. Taking advantage 

 
Fig. 2. The framework of the proposed method. 
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of the feature of hazy images, a co-occurrence histogram 

based saliency detection method is proposed, in which high 

saliency value represents depth change regions [22, 23]. 

 For a single channel image Im with k possible intensities, 

the co-occurrence histogram COH can be expressed by [21]  

 [ ( , )],COH coh m n  (3) 

where COH is a symmetric square matrix of size k k . A 

COH element coh(m,n) can be computed as follows: For 

each pixel whose intensity is m, we count the number of 

pixels whose intensity is n in its local neighborhood window 

of size z z  (z is set to 3 in this paper), and coh(m,n) is the 

sum of all these numbers. For the convenience of the follow-

up calculation, COH is normalized by its maximum element: 

  [ ( , )] ,
max( ( , ))

COH
NCOH ncoh m n

coh m n
   (4) 

where NCOH is the normalized co-occurrence histogram 

with each element between 0 and 1. 

 As mentioned, pixels pairs that rarely appear should have 

high saliency value, thus we first compute the primary 

saliency value of each intensity pair by: 

  ( , ) ln( ( , )),ps m n ncoh m n   (5) 

where sp(m,n) represents the primary saliency value of  the 

intensity pair which is composed of intensity m and intensity 

n. Considering that very close intensities cannot be clearly 

distinguished by human eyes, and in order to further 

suppress the saliency value of the intensity pairs that occur 

frequently, the final saliency value of each intensity pair 

s(m,n) is given by: 

  
( , )

( , ) min ( , ),p
x y

s m n s x y


  (6) 

where  is a local patch centered at (m,n) whose size is 

  (we fix  to 10 in this paper). Ultimately, since there 

is no need to set saliency value for nonexistent intensity 

pairs, s(m,n) is changed to zero when coh(m,n) is equal to 

zero.  

 Finally, the saliency map of the input image can be 

obtained by computing the saliency value of each input pixel: 

  

' '

( , ) ( ( , ), ( ', ')),
j ri r

i i r j j r

sa i j s Im i j Im i j


   

    (7) 

where sa(i,j) is the saliency value of the pixel whose 

coordinate is (i,j), and r is the window radius which is used 

in computing each COH element. 

Figure 3 shows an input image and its saliency map 

computed by our proposed method. From the result we can  

see that the depth change regions are marked as high 

saliency, while the texture part such as the leaves and trunk, 

has lower saliency value. 
 

2.3 Saliency based guidance image generation 

 

For each pixel, the minimum value in RGB channel is the 

upper limit of its thickness of haze. Hence, to better capture 

the depth change regions, i.e. the regions where the 

thickness of haze changes, a minimum channel image, which 

is generated by calculating the minimum value in RGB 

channel on each pixel, is used to compute saliency map. 

     For simplicity, the red channel of the input hazy image is 

used as one gray-scale primary guidance image G1. In order 

to blur the textures, an averaging filter with a moving 

window is performed on G1, which generates another 

primary guidance image G2.  

As mentioned, saliency value indicates depth change to 

some extent, thus we can use the saliency map sa as an 

adjustable factor to fuse G1 and G2 in order to blur most 

texture details while remaining depth change regions clearly 

visible. However, as shown in Fig. 3, the saliency map just 

marks the edges but not take into consideration the pixels 

that are close to these edges. Since these pixels are in the 

windows which contain depth change, they should also be 

less affected by the averaging filter. Thus, a refined 

adjustable factor F is defined as: 

  
( )

( )
( ) max ,

( , ) 1y x

sa y
F x

d x y



 (8) 

where  is a local patch centered at x, whose size is the 

same with the size of the averaging filter. d(x,y) is the 

normalized distance between x and y: 

  ( , )
( , ) ,

E x y
d x y


  (9) 

where E(x,y) is the Euclidean distance between x and y, and 

 is the window radius of the averaging filter. 

 Ultimately, the final guidance image can be generated by:  

  * ( )* ,1 21G F G F G    (10) 

where G is the final guidance image. 

Figure 4 gives an example of the common guidance 

image and our guidance image, and their corresponding 

dehazing results. 

 
(a)           (b)           (c)            (d)            (e)            (f) 

Fig. 4. Different guidance images and their corresponding 

results. (a) Input image. (b) Saliency map. (c) Common 

guidance image. (d) Haze-free image recovered by (c). (e) 

Our guidance image. (f) Haze-free image recovered by (e). 

 

 
(a) (b) 

Fig. 3. Input hazy image and its saliency map. (a) Input 

hazy image. (b) Saliency map. 
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3. EXPERIMENTAL RESULTS 

 

In this section, we compare our results with the results of He 

[7], Tarel [8], and Sulami [10]. A comprehensive evaluation 

is made by both qualitative and quantitative analysis. 

3.1 Qualitative comparison 

 

The results of different methods are shown in Fig. 5. From 

the results shown in the first and second row, it can be seen 

that our results have more concrete edges, while the details 

of other methods are relatively vague. Meanwhile, our 

method greatly reduces the detail loss resulting from color 

distortion in local region, which can be seen from the results 

shown in the third and last row. 
 

3.2 Quantitative comparison 
 

We use the indicators proposed in [24] to evaluate the 

results of these four methods. Higher value of e in Table 1 

represents higher rate of new visible edges. In Table 2, r  

shows the quality of contrast restoration, and higher value 

denotes better contrast restoration. Table 3 shows the rate of 

saturated pixels  . The smaller   is, the better the method 

performs. Compared with He’s method, i.e. dark channel 

prior with input hazy image as guided image, our proposed 

method has great advantage in both increasing visible edges 

and restoring image contrast. Compared with other state-of-

art approaches, our method also gives comparable results in 

indicator e and r . There is no evident superiority for our 

method in indicator  . However, this is acceptable because 

we do not suppress oversaturated pixels explicitly in our 

method. 
 

 

4. CONCLUSION 

 

In this paper, we utilize a co-occurrence histogram based 

saliency detection method to capture the abrupt depth 

change regions in hazy images, then use the saliency value 

as an adjustable factor to generate proper guidance images 

for later transmission refinement step. Experimental results 

indicate that our method has great advantage in detail 

recovery compared with other state-of-art methods. 

 
 (a)     (b)  (c)                                  (d)                                 (e) 

Fig. 5. Results comparison of different dehazing methods. (a) Input images. (b) He’s results [7]. (c) Tarel’s results [8]. (d) 

Sulami’s results [10]. (e)Our results 

 

Table 1. Indicator e  of the images in Fig. 5. 

e  He Tarel Sulami Our 

First row 1.2548 1.5793 1.2682 1.5978 

Second row 0.0708 0.2338 0.0685 0.0741 

Third row 0.2520 0.4189 -0.2898 0.3178 

Fourth row 0.4310 0.3439 0.4939 0.4890 

 

Table 2. Indicator r  of the images in Fig. 5. 

r
 

He Tarel Sulami Our 

First row 1.0960 2.4996 1.2034 1.5588 

Second row 1.3000 1.9031 1.3958 1.5084 

Third row 1.2365 1.6627 2.9207 1.4736 

Fourth row 1.4301 1.9807 1.5877 1.9263 

 

Table 3. Indicator   of the images in Fig. 5. 

 (%) He Tarel Sulami Our 

First row 0.4738 0 1.9300 0.3067 

Second row 0.0023 0 0.0023 0.0113 

Third row 0.0003 0 0.0424 0.0004 

Fourth row 0.0285 0 0.0464 0.0064 
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