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ABSTRACT

Rain streaks severely hamper the visible performance of the
outdoor surveillance videos, which becomes an attractive is-
sue in recent computer vision research. Existing methods usu-
ally encode rain streaks into Gaussian Mixture Model (GM-
M). However, the limited number of Gaussian components in
the GMM compromises the ability of the model in fitting real
noise, such as sparse noise, which is exactly the characteris-
tic of the rain streaks. In this paper, a novel model named
Mixture Exponential Power Model (MEPM) is exploited. It
sets multiple Laplace noise components and expands the rep-
resentation capability for the sparse noise. Moreover, consid-
ering that the rain streaks in a video occur in different dis-
tances from the camera, we encode rain streaks into Multi-
scale Mixture Exponential Power Model. The model is opti-
mized by expectation-maximization (EM) algorithm and La-
grange multiplier strategy. Experiments are implemented on
synthetic and real rain videos and verify the superiority of the
proposed method, compared with state-of-the-art methods.

Index Terms— Rain streaks, video, sparse noise, Mixture
Exponential Power Model, Multi-scale.

1. INTRODUCTION

Rain removal is an important problem in computer vision,
and it may degrade performance of video processing, like
person tracking [1], recognition [2], detection [3] and re-
identification [4, 5]. The performance of outdoor surveil-
lance videos often degrades when videos contain rain streaks.
Therefore, it is essential to remove rain streaks from the
surveillance videos in bad rainy conditions which attracts
wide attention in recent years.
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In 2004, the characters of the nature rain streaks was first-
ly analyzed by Garg and Nayar. They [6] presented the com-
prehensive analysis of the visual effects of rain streaks, and
detected the rain streaks based on a correlation model. Garg
and Nayar [7] further proposed to reduce or even remove
the effects of rain streaks by setting parameters of the cam-
era, such as exposure time and depth of field. Afterward-
s, more intrinsic properties of rain streaks and algorithms of
rain streak removal were explored. Recently, Jiang et al. [8]
considered the sparsity of rain streaks and proposed a tensor-
based rain streaks removal approach in video. To deal with
heavy rain streaks in dynamic scenes, Ren et al. [9] divided
rain streaks into dense layer and sparse layer, and they as-
sumed that the dense ones obeyed Gaussian distribution. Lat-
er Wei et al. [10] firstly encoded the rain streaks in video
into a patch-based mixture of Gaussians and proposed 3DTV
to regulate moving objects. However, the limited number of
Gaussian components in the GMM compromises the ability
of the model in fitting real noise, especially the sparse noise.
It has been investigated in [11], Mixture Exponential Pow-
er Model (MEPM) performs better than GMM in the sparse
noise case.

In view of the limitation of GMM, we adopt the novel
model named MEPM in this paper. This model sets multiple
Laplace noise components, which expands the representation
ability for the sparse noise. Taking the rain streaks as an ex-
ample, the sparsity of rain streaks has been investigated in
[8, 12].

In addition, the multi-scale strategy has attracted much
attention and achieved impressive performance for low-level
vision tasks, e.g., image super-resolution, noise removal, im-
age segmentation, visual tracking. According to [7], the rain
streaks near the camera are dynamic with large shapes, while
the rain streaks away from the camera are with small shapes.
Considering that we encode the rain streaks in MEPM from
different scales. The parameters of the Multi-scale Mixture
Exponential Power Model (MMEPM) can be optimized by
expectation-maximization (EM) algorithm.
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2. MMEPM FOR RAIN REMOVAL IN A VIDEO

2.1. Problem formulation

In general, video with rain streaks is constituted with back-
ground information, rain streaks and moving objects, such
that

O = B +R+M, (1)

where O ∈ Rw×h×n, B ∈ Rw×h×n , R ∈ Rw×h×n and
M ∈ Rw×h×n respectively represent the input video, the
background, the rain streaks and the moving objects. w, h
and n respectively represent the width, height and the frame
number of a video. Our goal is to remove the rain streaks R
from the video O and get a non-rain video.

Multi-scale decomposition. Considering the calculation
cost and experiment results, the number of scales is set to
be 2. Laplace pyramid is proposed to decompose the video
into multi-scale. At each pyramid level, rain streaks are pro-
gressively simulated by MEPM. Simulating the rain streaks
in multiple scales can extract detail structures better.

O = O1 +O2, (2)

Modeling rain streaks by MMEPM. It is a tradition-
al method to stimulate rain streaks with GMM. As we have
analyzed in the introduction, a novel model is exploited to
simulate the rain streaks. However, rain streaks in video are
generally with multi-scale characteristic since they are cap-
tured from different distances by camera. To better character-
ize the features of rain streaks, Multi-scale Mixture Exponen-
tial Power Model (MMEPM) is utilized to simulate the rain
streaks. The MMEPM can be formulated as follows:

P (eij) =

K∑
k=1

πkfpk(eij ; 0, µk), (3)

where πk is the distribution weights with 1 ≥ πk ≥ 0, K
is the number of the mixture components and fpk(eij ; 0, µk)
denotes the kth EP distribution.

The density function of the EP distribution (p > 0) with
zero mean is

fpk(eij ; 0, µk) =
pµ

1
p

2Γ( 1
p )
exp {−µ|e|p} , (4)

where µ is the precision parameter, p is the shape parame-
ter and Γ(·) is the gamma function. By changing the shape
parameter p, we can get different Exponential Power distribu-
tion [11]. In particular, when p=1, it is a Laplace distribution,
when p=2, it is a Gaussian distribution. Therefore, GMM is a
special case of MEPM.

Modeling the background with low-rank decomposi-
tion. In order to initialize the background, the video infor-
mation is converted into matrix information, and the column
pixel values of the matrix represent the pixel values of a frame
in the video. The number of frames in the video is equal to the
number of columns in the matrix. Under the condition of still

camera, the pixel changes among the video image sequences
are caused by the moving objectsM and rain streaksR. Then
low-rank decomposition of the matrix can be used to get the
initialization background information. Here, we adopt SVD
decomposition. The low-rankness of the reconstruction UV T

can infer the final background information.
B = UV T , (5)

Where U ∈ Rd×r, V ∈ Rn×r, and r ≤ min(d, n).
Modeling moving objects with Markov random field

and graph cut method. A binary mask H is used to mark
whether there are moving objects or not. When the binary
mask pixel value is 1, it indicates that there is a moving object
at that pixel, otherwise there is no [15, 16]. For moving object
areas, there is such a formula:

H ◦O = H ◦M (6)
here, the rain streaks on the moving objects are neglected. In
section 2.3, a correction factor is used to reduce the influence
of the rain streaks on moving objects. Inspired by Wei. et al.
[10], to regularize the moving objects mask H , L1-penalty
and 3DTV penalty are used. The moving objects are labeled
with graph cut algorithm and Markov random field (MRF).
By integrating the aforementioned three models, the proposed
MMEPM can be constructed as follows:

min−
∑
ij∈Ω

log

K∑
k=1

πkfpk((1−H) ◦R; 0, µk)

+Q1||H||3DTV +Q2||H||1
s.t.(1−H) ◦R = (1−H) ◦ (O −B), B = UV T ,

(7)

The number of Exponential Power in the model can be
solved by the method proposed by Huang et al. [17], and
construct the following penalized MMEPM:

min−
∑
ij∈Ω

log

K∑
k=1

πkfpk((1−H) ◦R; 0, µk)

− nδ
K∑

k=1

Dklog
πk + ε

ε
+Q1||H||3DTV +Q2||H||1

s.t.(1−H) ◦R = (1−H) ◦ (O −B), B = UV T ,

(8)

where ε is a very positive number. In this paper, we choose
ε to be 10−6, δ to be 0.1 and Dk is the free parameter for
the kth component. Then the parameters of the model can be
optimized by EM algorithm.

2.2. Optimization

EM algorithm is an iteration leaning processing. Calculating
the log likelihood is the first step of the EM algorithm.

E step. Introducing a latent variable zijk. It is a random
variable between zero and one, and

∑K
k=1 zijk = 1.

γ
(t+1)
ijk = E(zijk) =

π
(t)
k fpk((1−H) ◦R; 0, µk)∑K

l π
(t)
l fpl((1−H) ◦R; 0, µk)

(9)
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(a) rain image (b) groundtruth (c) Fu [13] (d) Li [14] (e) Wei [10] (f) Li [12] (g) Ours

Fig. 1. Rain removal performance of different methods on a synthetic video .

(a) rain image (b) groundtruth (c) Fu [13] (d) Li [14] (e) Wei [10] (f) Li [12] (g) Ours

Fig. 2. Rain removal performance of different methods on a synthetic video with a moving truck.

M step. Then, we can get the final function Q, following
EM algorithm theory.

Q =
∑
ij

K∑
k=1

γ
(t+1)
ijk [logfpk((1−H) ◦R; 0, µk) + logπk]

− nδ
K∑

k=1

Dklog
πk + ε

ε
+Q1||H||3DTV +Q2||H||1

(10)

Update Q. Introduce a Lagrange multiplier λ and then
maximum the Lagrange function∑

ij

K∑
k=1

γ
(t+1)
ijk logπk − nδ

K∑
k=1

Dklog
πk + ε

ε
+

λ(
∑
k

πk − 1),

(11)

Update µ. To obtain the update equation of µ, take the
first derivative of Q with respect to µk, and get the zero point:

µ
(t+1)
k =

1

pk|(1−H) ◦R|pk
(12)

Update U, V. The updates for the unknown U, V as fol-
lows:

min
∑
ij

K∑
k=1

γ
(t+1)
ijk [logfpk((1−H) ◦R; 0, µk)

+ logπk] +Q1||H||3DTV +Q2||H||1

(13)

Using Augmengted Lagrangian Multiplier strategy to
solve Eq. (13).

2.3. Post processing

During the rain streaks removal processing, the algorithm ne-
glects the effect of the moving objects on the rain. Then the

post processing is necessary and solved with TV regulariza-
tion [18, 19].

3. EXPERIMENTAL RESULTS

In order to prove the superiority of the proposed method, four
current state-of-the-art methods are compared, including Fu
et al. [13] (TIP’s 2017) based on deep learning for a single
image, Li et al. [14] (CVPR’s 2016) based on GMM for a
single image, Wei et al. [10] (ICCV’s 2017) based on GMM
for video and Li et al. [12] (CVPR’s 2018) based on convolu-
tional sparsely encoding for video. Due to the limited space,
the experimental results are compressed to a small extent. In
order to get better visual, please zoom in to see details.

3.1. Results on synthetic videos

In this section, we show the experiment results on synthet-
ic videos. We choose two videos with different types of rain
streaks and background scenes. The frame number of each
video is 100. Rain streaks in Fig. 1 are thin whereas that in
Fig. 2 are thick. From Fig. 1, comparison methods proposed
by Fu et al.[13], Li et al.[14] and Li et al.[12] fail to remove
all rain streaks. Wei et al. [10] removes almost all rain streak-
s, while it generates a edge color problem. According to Fig.
2, methods of Fu et al. [13], Li et al. [14] can not remove
all rain steaks. Wei et al. [10] causes serious color distortion
problem. Li et al. [12] blurs the image. While our method can
remove the majority of the rain streaks as well as maintain the
feature details.

Quantitative comparisons are showed in Table 1 and Table
2. Here we choose three image performance metrics PSNR,
SSIM and FSIM to verify the performance of the algorithm-
s. We use average values of these performances metrics in
videos. In the results of Fig. 1, it can be seen that our method
outperforms other methods in objective parameters. In the re-
sults of Fig. 2, the PSNR is not particularly good, probably
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(a) rain image (b) Fu [13] (c) Li [14] (d) Wei [10] (e) Li [12] (f) Ours

Fig. 3. Rain removal performance of different methods on a real video.

(a) rain image (b) Fu [13] (c) Li [14] (d) Wei [10] (e) Li [12] (f) Ours

(b) Fu [13] (c) Li [14] (d) Wei [10] (e) Li [12] (f) Ours

Fig. 4. Rain removal performance of different methods on a real video.

because our method not only removes the rain streaks in the
video, but also removes the video noise.

3.2. Results on real videos

In this section, we show the experiment results on real videos.
In the results of Fig. 3, we can see that the results of Fu et al.
[13] have a severe color distortion. A severe detail texture
distortion exists in the results of Li et al. [14]. Too many rain
streaks remain in the results of Wei et al. [10] and Li et al.
[12], and according to our statistic, there are respectively 35
and 51 frames in the 100 frames with rain streaks.

In Fig. 4, similar to above experiments, Fu et al. [13]
and Li et al. [14] fail to protect the color or destroy the detail
texture. What’s more, in the results of Wei et al. [10], the
color distortion problem of the passenger exists. Li et al. [12]
removes the rain streaks at the expense of degrading the visual
of moving objects. The rain streaks removed by each method
in this scene are shown in Fig. 4. From the results of Fig.
3 and Fig. 4, the proposed method get a good visual effect
in both rain streaks removal and detail preservation in real
videos.

4. CONCLUSION

In this paper, considering the sparsity feature of rain streaks
with scattered over different positions of the video, MMEP-
M is adopted to stimulate the rain streaks. The experiments
on synthetic and real videos demonstrate that our algorith-

Table 1. Performance comparison of different methods on
synthetic video in terms of PSNR, SSIM and FSIM in Fig. 1.

Li [14] Fu [13] Wei [10] Li [11] Ours
PSNR 31.0354 28.5137 32.2509 34.3237 34.6939
SSIM 0.9039 0.8865 0.9691 0.96337 0.9715
FSIM 0.9310 0.9119 0.9799 0.9749 0.9821

Table 2. Performance comparison of different methods on
synthetic video in terms of PSNR, SSIM and FSIM in Fig. 2.

Li [14] Fu [13] Wei [10] Li [11] Ours
PSNR 24.1431 22.0278 25.8028 26.2764 26.1293
SSIM 0.9273 0.9217 0.9566 0.95615 0.9572
FSIM 0.9478 0.9519 0.9805 0.9795 0.9797

m can yield better results than other state-of-the-art methods.
However, the proposed method exists a limitation that the im-
ages of the video must have a same background, which mean-
s it cannot be suitable for the scenarios of moving camera.
Our further work will be devoted to address the background
changes with the moving camera.
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