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ABSTRACT
The multi-focus image fusion with deep learning methods is
mostly regarded as a two or three-category problem. Cur-
rent systems utilize sliding windows to classify each pixel
into focused or defocused, which is time consuming and re-
quires post-processing such as denoising. In this paper, we
propose a novel network architecture for multi-focus image
fusion based on the latent decision map. For a regression task
instead of a classification problem, we focus on learning the
latent spatial decision map. This decision map indicates the
degree of each focused pixel. To further improve the fusion
result, we utilize the ResNet blocks to extract image features,
and then combine low-level features with high-level semantic
information. Our apporach makes the learning process easi-
er and has better robustness and efficiency as well. Experi-
mental results demonstrate that our framework has ability of
achieving the state-of-the-art in terms of both qualitative and
quantitative measures.

Index Terms— Multi-Focus, Image Fusion, Two-Stream
Feature Extraction, Latent Decision Map

1. INTRODUCTION

Multi-Focus Image Fusion (MFIF) aims to reconstruct a clear,
fully focused image by fusing multi-focus images with the
same scene. Multi-focus image fusion technology has a wide
range of applications in civil digital, remote sensing, biomed-
ical research and other fields. There are some traditional
methods, including boundary finding (BF) [1], guided filter-
ing (GF) [2], image matting (IM) [3] and dense SIFT (DSIFT)
[4]. Recently, Liu et al.[5] applied deep convolutional neural
networks to multi-focus image fusion firstly. They treated it
as a two-category issue and classified per pixel to “focused”
and “unfocused”. Tang et al.[6] improved this method and
repurposed the problem to “focused”, “unfocused” and “dif-
ficult to judge” and resulted in better quality metrics. These
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Fig. 1. Our method for multi-focus image fusion. (a) and
(b) are two input images of different focus, (c) is the decision
map. (d) is the final fusion result.

two methods regarded the multi-focus image fusion problem
as a simple classification task and utilized a series of post-
processing methods to remove the noise. Their solution is
complicated and non-end-to-end. Yan et al.[7] proposed an
unsupervised way to reconstruct clear images. The multi-
focus image dataset was directly used as the training set, and
the distribution of the dataset is consistent with the test set.
This approach achieved better results for the mentioned rea-
sons. Yet, it is challenged to collect so many focus images
for training in practical application. The proposed methods
can not be applied to other databases and must be trained
individually and repeatly for each database.

In order to solve the issue, our method introduces domain
knowledge, generating an all-focused image through our end-
to-end network. It is relatively difficult to reconstruct images
directly, so we introduce the decision map α to express the
depth of the field. Our network can fuse the images at pixel
level with better edge and small objects of different depths-
of-field. Our contributions can be summarized as follows,

• Our network generates fully focused image from latent
spatial decision map α, which is an end-to-end system.
Compared with other methods, our network does not
need post-processing and classifies small objects more
precisely.

• Inspired by domain knowledge, we introduce an latent
spatial decision map α to learn the degree of the fo-
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Fig. 2. Our model review. “+” indicates two matrices addition; “C” in the circle indicates that the matrices are concatenated in
the third channel. To simplify the figure, the bold ring represents that we concat the matrix M with the feature maps E.

cus at each pixel. We consider this task as a regression
problem rather than the two-category or three-category
problem, which empowers the transition of the depth in
the field.

• We boost the feature fusion by using two-stream fea-
ture extraction. Both low-level features and high-level
features are merged, which avoids gradient vanishing
and makes learning process easier.

• We don’t need real multi-focus images to train. Though
the images we trained are different from the test
datasets, we have superior generalization performance
on all multi-focus datasets than other methods.

2. METHOD

We illustrate our network in Fig. 2. Overall, our network can
generate fully-focused clear images with different focus and
any size.

2.1. Deep Detail Network for Image Fusion

2.1.1. Two-Stream Feature Extraction Part

As shown in Fig. 2, we use ResNet blocks [8]to extract net-
work features. Gray images are fed into our network, which
can also simultaneously apply to RGB and gray multi-focus
images. We extract the features separately in each stream to
obtain the different information through the different focus
input. Feature extraction with two ResNet blocks is available
to get more high-level semantic features. Moreover, the d-
ifference features of one stream and other stream can focus
on respective clear part and make up to each other to get a
decision map. This part can be expressed as follows,

Y 1 = max(W 1 ∗A1 + b1, 0),

Y 2L = max(W 2L ∗ Y 2L−1 + b2L, 0),

Y 2L+1 = max(W 2L+1 ∗ Y 2L + b2L+1, 0) + Y 2L−1,

(1)

where W contains weights, b is biases and L = 1, 2. A1

stands for the input (gray images). When L = 1, Y 2∗1+1 =
C1 and when L = 2, Y 2∗2+1 = D1. A1, C1, D1 can be seen
in Fig. 2. The feature extraction of second stream is the same
with first one, except input image A2.

2.1.2. Image Feature Fusion Part

In order to fuse two-stream features together, we add the D1

and D2 generated from two-stream. Though D1 and D2 con-
tain much more high-level features, the lack of details in the
boundary regions is an enormous challenge for reconstruction
of decision map. Therefore, we concatenate the original fea-
tures M to E, where M is the addition of A1 and A2. It is
of great importance to make the F contain more detail fea-
tures. The concat function is defined as stack of feature maps
in the third dimension. To make decision map contain the
two-stream features, the output F and the layer-by-layer fea-
tures C1,C2,D1 and D2 are concatenated. In other words, the
decision map can be refined by embedding more details from
two-stream extraction part. This skip connection can also di-
rectly propagate loss throughout the entire network, which is
useful for estimating the decision map α and the final fusion
image. Image feature fusion part can be expressed as follows,

E =max(WE ∗ (D1 +D2) + bE , 0),

F =max(WF ∗ Concat(M,E) + bF , 0),

G =max(WG ∗ Concat(C1, D1, F, C2, D2) + bG, 0),
(2)

where W contains weights and b biases. E, F , G, C1, D1,
C2, D2 can be seen in Fig.2.

2.1.3. Multi-Focus Image Reconstruction part

Since We have acquired enough low-level and high-level fea-
tures based on the image fusion process, we reduce the num-
ber of output feature maps to 64 dimensions through a convo-
lutional layer and a rectified linear unit (Relu)[9] and reduce
it to 1 dimension finally. That is the decision map α, lead-
ing to the final regression problem much easier. Finally, two-
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Fig. 3. Visualization of the network-learning decision map
process. The naming of all the images corresponds to the
names in Fig. 2. Each of them is a feature map for each stage.

dimensional spatial decision map with the input image size is
obtained, then we can actively learn the degree of image fo-
cus at the pixel level. The final full-clear image is generated
by the relationship between the decision map and the input
image as follows,

Fusion = α · F1 + (1− α) · F2, (3)

where α is the decision map, F1 and F2 represent the two
input focus images.

2.2. Loss Function

Our network is based on learning of the decision map. The
quality of the decision map has a huge impact on the quality
of the reconstructed image. L2 loss make reconstructed im-
age more smooth[10], so we use the L1 loss[11] as final loss
function. Our goal is to learn the appropriate decision map
α, so the reconstructed image is the fully focused image. The
loss function is defined as,

Loss(F1, F2, α) = ‖ α · F1 + (1− α) · F2 −GT ‖1,
(4)

where GT is GroundTrue of clear image. In the training stage,
α learns a continuous value between 0 and 1. But in the test
stage, we will generate the decision map based on the degree
of the focus, and finally we obtain binary decision map con-
taining only 0 and 1. For the decision map, we define α as
follows,

α =

{
1, α(x, y) ≥ 0.5

0, α(x, y) < 0.5,
(5)

where (x, y) is the coordinates of the image. It’s worth men-
tioning that we don’t need to do this during the training stage.
It’s just a layer added in the test stage.

To understand how our network works, we visualize the
network and take a feature map after each layer to view the
learning process of the decision map. It can be seen from the
Fig. 3. The top and bottom of stream extract and learn the fo-
cused portion of the corresponding multi-focus images in the
two-stream structure respectively. Taking the “GOLF” image

as an example, after the top and bottom of stream are extract-
ed by the feature map, the upper stream focus on the player,
while the nether stream focuses on flag, the golf ball scat-
tered on the ground and the background. In the part of fusion,
foreground and background area begins to be segmented. At
the same time, the noise particles become smaller and smaller
and numerical value of α approaches 0 or 1. The final de-
cision map can combine the respective focus information to
fuse the focus area and generate final clear image.

3. EXPERIMENT

3.1. Training Set and Network Parameter Settings

We use high-resolution images from the DIV2K train set [12]
to simulate multi-focus images as training sets. We randomly
crop 60000 images with the size of 32 × 32. Six templates
are learnt from PCNN [6] as shown in Fig.4. We add gaus-
sian blur [13] to the original image with a standard deviation
1 and filter sizes of 3, 7, 11 and 15 to simulate the differ-
ent degree of focus respectively, which produces a total of
60000 × 6 × 4 = 1.44 million pair of images. During train-
ing, we randomly exchange training images for the position of
two-stream, which makes the network to understand whether
its learning goal is to focus or not, rather than other tasks and
make network network have better generalization capabilities.

Fig. 4. six templates for gaussian blur. The black part us-
es guassian blur by pixel, and the white part keeps the value
unchanged.

All the layer’s feature maps are 128, kernel size is 3 × 3
and step size is 1, except G is 64 and α is 1 shown in Fig.2.
The Adam [14] optimization method was used to train net-
work for a total of 200,000 training iterations. The batch size
is set to 32. The initial learning rate is set to 0.0001 and di-
viding it by 10 at 5 × 104 and 1.5 × 105 iterations. All ex-
periments were implemented with Tensorflow [15] on Nvidia
1080TI GPU.

3.2. Compared with Other Methods

We compare ours method with several of the best methods on
multi-focus image datasets. Including CNN [5], PCNN [6],
BF [1], GF [2], IM [3] and DSIFT [4]. We validated vari-
ous algorithms on two published multi-focus image datasets
which is widely used to evaluate fusion performances for a
total of 39 pairs of multi-focus images. 19 pairs of them are
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Fig. 5. Fusion results of various methods on “GOLF” images.

Fig. 6. The residual of difference images between each fused
image and the first source image (Source1).

gray images from the multi-focus image fusion dataset. The
other 20 pairs are RGB image from “Lytro” dataset [16]. No
single quality metric can fully explain the quality of the fused
image, so it is necessary to combine multiple quality metric
to evaluate the the fused images. We select four quality met-
ric to evaluate the fused images, The first one is normalized
mutual information QMI [17]. The second one is Objective
Pixel-level Image Fusion Performance MeasureQG [18]. The
third one is information entropy EN [19], which estimates
the amount of information present fusion image. The last one
is visual information fidelity V IFF [20], which measures the
visual information fidelity.

In Fig. 5, we compare the fusion results of our proposed
network and other methods for the “GOLF” image in the
“Lytro” image dataset. It can be seen that our method gen-
erates the best fusion result, which have better visual effect.
We select the partial magnification to see the arm area of the
fused image. It can be seen that in the edge part of the left
arm, IM, BF, CNN, have obviously edge blur and our fusion
image is the clearest. By comparing the resulting fused image
with the source image, we can see that ours method of the
transition between the two focous regions is more natural.

In Fig. 6, It can be clearly seen that the IM, BF method
have unsatisfied performances on the edge and have so much
noise. IM and BF methods are less effective at the shape of
edge and the bottom of golf club head is severely deformation.

GOLF QMI ↑ QG ↑ EN ↑ V IFF ↑
GF 1.050 0.720 7.011 0.966
IM 1.073 0.710 7.018 0.966

DSIFT 1.145 0.725 7.013 0.968
BF 1.123 0.715 7.004 0.946

CNN 1.089 0.720 7.007 0.962
PCNN 1.143 0.723 7.013 0.964
Ours 1.149 0.727 7.014 0.969

Table 1. Comparison of performance among our method and
other methods on “GOLF” image fusion.

PCNN has more noise at the bottom of the golf club head, left
shoulder and left arm. Though GF and CNN extracts most
detail in source images, but the merging effect is also worse
than our method in boundary regions. DSIFT is the best non-
deep learning method for fusion. But it worth paying attention
to that DSIFT and other methods have lost the tiny triangular
regions between the right hand and the hat. As visualized
in the red box we circled, it should be background but they
misclassification. This tiny triangular regions was reserved
well in our method, because we never using hold filling [5,
6] to remove noise. Our method preserve the smooth area
in foreground and background well and the transition on the
edge details more natural and has a better visual perception.

Dataset QMI ↑ QG ↑ EN ↑ V IFF ↑
GF 1.073 0.705 7.396 0.884
IM 1.146 0.707 7.393 0.879

DSIFT 1.190 0.713 7.389 0.885
BF 1.189 0.716 7.384 0.876

CNN 1.154 0.714 7.389 0.884
PCNN 1.189 0.709 7.387 0.879
Ours 1.192 0.712 7.401 0.888

Table 2. Comparison of performance among our method and
other methods on all the 39 images in both of datasets.

Table. 2 lists the fusion quality metrics calculated using
the above four metrics and the average of the fusion results
produced by 39 pairs of multi-focus images. The best result
is bolded on each column. The above metrics show that our
method has reached the best performance and significant im-
provement over other methods visually and metrically.

4. CONCLUSION

In this paper, we propose an end-to-end multi-focus im-
age fusion framework based on the latent decision map.
Our network is capable of extracting most important feature
and incorporating low-level features with high-level features
through the two-stream. We adopt the simple and efficient L1

loss and learn the appropriate decision map from two-stream
to reconstruct full-focused image finally. Our method does
not need to use real multi-focus images for training and post-
processing such as denoising. Quantitative and qualitative
results demonstrate that our contributions lead our network to
achieve the state-of-the-art.
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