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ABSTRACT

Deep convolutional neural networks (CNNs) have recently
made a considerable achievement in the single-image super-
resolution (SISR) problem. Most CNN architectures for SIS-
R incorporate skip connections to integrate features, and treat
them equally. However, this neglects the discrimination of
features, and consequently, achieving relatively poor perfor-
mance. To address this problem, we introduce a deep aggre-
gation network that merging extraction and aggregation nodes
in a tree structure, which can aggregate features progressive-
ly. In particular, we rescale the information in the aggregation
node by modelling the interaction between channels, which
shares the same insight on the attention mechanism for im-
proving the discriminative ability of network. In the extrac-
tion node, we introduce an mlpconv layer into a dense unit
that is parallel to the convolutional layer and can improve the
nonlinear mapping capability, where the residual learning is
utilized to accelerate the training process. Extensive experi-
ments conducted on several publicly available datasets have
demonstrated the superiority of our model over state-of-the-
art in objective metrics and visual impressions.

Index Terms— Super-resolution, convolutional neural
network, aggregation, mlpconv layer, attention mechanism

1. INTRODUCTION

Single-image super-resolution (SISR) aiming to reconstruc-
t a high-resolution (HR) image from a single low-resolution
(LR) input image, has been widely studied in computer vi-
sion, medical imaging, satellite imaging, etc. SISR is essen-
tially to recover high-frequency details from low-frequency
data, and it poses an ill-posed and challenging problem due
to the inevitable loss of information in the image degenera-
tion process. To solve this problem, various methods have
been investigated, including interpolation-, reconstruction-,
and learning-based methods [1, 2, 3]. Possessing the strong
nonlinear expressiveness, convolutional neural network (CN-
N) based methods have become increasingly popular in recent
years for solving the aforementioned ill-posed problem [4, 5].
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To learn a nonlinear LR-HR mapping, Dong et al. [6] first
introduced CNN into SISR in an end-to-end manner, called
SRCNN, which has shown its superiority to non-deep learn-
ing methods even if it relies on just a small receptive field.
The SRCNN is subsequently improved by incorporating long
or short and multi-path skip connections, such as VDSR [7],
DRCN [8] and DRRN [9]. In general, a deeper network can
obtain more nonlinearity and larger receptive fields, and sig-
nificant efforts have been made to achieve this goal, such as
EDSR [10], MemNet [11] and RDN [12]. However, as the
network growing deeper, the features extracted by convolu-
tional layers would be hierarchical. How to make full use of
such features to recover more details is still an open problem.

In the recent past, to better propagate information, re-
searchers have been focusing on designing a network con-
necting the features densely. DCSCN [13] firstly introduced
the densely connection in extraction network by only one
dense block, and subsequently skip connections between
several dense blocks in SRDenseNet [14] were utilized, per-
forming better reconstruction results. Furthermore, different
levels of information extracted by dense block were concat-
ed for construction in RDN [12]. Nevertheless, the existing
scenarios typically involve two major disadvantages. On the
one hand, it is difficult for each layer to abstract ample non-
linear features via a single filter. On the other hand, when the
densely connected features at different levels are employed
for the next operation or for reconstruction, they are treated
equally, neglecting the discrimination of the information.

In this paper, we proposed a deep aggregation network
named SRDAN to address the aforementioned drawbacks. In
particular, we unify the aggregation and extraction nodes in
a tree structure to learn richer combinations from the fea-
ture hierarchy. Similar to the HDA structure [15], our SR-
DAN iteratively merges the hierarchical features through an
aggregation module, as shown in Fig. 1. Rather than concat-
ing the features at different levels directly, we propagate the
output of an aggregation node through all the previous states
and progressively aggregate and deepen the representations.
In the aggregation node, channel-wise features are combined
and compressed for efficiency. Before sending features to the
next stage, this node would learn to select features of rela-
tive importance by attention mechanism, so that the network
is discriminative and simultaneously offers a more efficient
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Fig. 1. The whole structure of the proposed SRDAN.

use of computation resource. In the extraction node, we mod-
ify the dense block and introduce the multilayer perceptron
convolutional (mlpconv) layer [16] to improve the nonlinear
mapping capability. Parallel to the convolutional layer, they
both have access to the additional inputs from all previous
dense units and pass on information that should be preserved.
Subsequently, local residual learning is utilized to adaptively
preserve the local feature after concating the state of previ-
ous dense units. Our method is evaluated on standard bench-
mark data sets, which outperforms state-of-the-art approaches
in terms of peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM).

Contributions. Our main contributions include the follow-
ing three aspects. First, we propose a new deep aggregation
network for SISR, which is able to outperform the state-of-
the-art. Second, an mlpconv layer is introduced into a dense
unit and combined with local residual learning, which can
avoid information loss after numerous layers and improve net-
work capability to learn nonlinear mapping from LR and HR
patches. Third, we introduce the attention mechanism for fea-
ture selection, enhancing the discriminative learning ability
and decreasing the parameters of the network.

2. PROPOSED METHOD

2.1. Overall Architecture

As shown in Fig. 1, our SRDAN consists of three parts: low-
level feature extraction, aggregation network and reconstruc-
tion. The output is ISR when a low-resolution image ILR is
taken as the initial input. First, we use a single convolution
layer to extract a shadow feature F0

F0 = H3×3(I
LR), (1)

where H3×3 denotes the convolutional operation with kernel
size 3 × 3. Subsequently, the first output F0 is applied to the
aggregation network, as the rich feature FRF is obtained as

FRF = A(F0), (2)

where A denotes the operation of the deep aggregation net-
work, which contains aggregation modules, merging aggre-
gation nodes and extraction nodes. In the reconstruction net-
work, we upscale the feature into high-resolution space by

FUF = U(FRF), (3)
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Fig. 2. Structures of (a) aggregation and (b) extraction nodes.

where U conducts the upscale, similar to that in EDSR, and
FUF is the upscaled feature. Finally, the SR result is recon-
structed by a convolutional layer

ISR = H3×3(FUF). (4)

Our method is optimized with `1 loss function. Given the
training set {(ILR

i , IHR
i )}Ni=1, which consists ofN LR patches

and corresponding HR ones. Thereby, the goal of training
SRDAN is to minimize the `1 loss between the SR results and
their corresponding HR counterparts

L =
1

N

N∑
i=1

∥∥ISR
i − IHR

i

∥∥
1
. (5)

2.2. Aggregation Network

Due to the fact that hierarchical feature combinations are ben-
efit for reconstruction when the network is growing deeper
[12], we introduce a hierarchical deep aggregation tree as the
aggregation network, as shown in Fig. 1. Specifically, in each
aggregation module, the extraction node and aggregation n-
ode are assembled in a tree-structured way to aggregate differ-
ent levels of representation. To improve the depth of the ag-
gregation module, the output of the aggregation node is sent
to the backbone to merge deeper feature iteratively.

2.2.1. Aggregation Node

Sharing the same insight of the attention mechanism, the
aggregation node aims to merge representations from differ-
ent levels and select informative features simultaneously, as
shown in Fig. 2a. At the beginning, a convolutional layer with
a 1 × 1 kernel is utilized for integrating spatial information.
Given an input X , the output is obtained by

F = H1×1(X). (6)

Due to the fact that low-frequency information extracted
in LR space are abundant even trivial, taking all concated fea-
tures for information abstraction would consume too much
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resource. Therefore, we adopt the attention mechanism to se-
lect useful features. To learn the inter dependencies between
channels, global spatial information is collected into a chan-
nel descriptor for expressing the whole image by global aver-
age pooling. Let F = [f1, . . . , fC ] be the input, which has C
feature maps with size of H ×W . The channel-wise statis-
tic Z = [z1, . . . , zC ] ∈ RC is then generated by shrinking F
through the spatial dimension H ×W

zc =
1

H ×W

H∑
i=1

W∑
j=1

fc(i, j), c = 1, . . . , C, (7)

where fc(i, j) is the value at the position (i, j) of the c-th fea-
ture fc. To make use of statistics for capturing channel-wise
dependencies, the nonlinear and non-mutually-exclusive in-
teractions should be learned adaptively to ensure the discrim-
ination on multiple channels [17]. Consequently, we employ
two convolutional layers followed by a sigmoid function to
acquire the final channel-wise weight

W = s(H3×3(σ(H3×3(Z)))), (8)

where s and σ represent the sigmoid and ReLU activation,
respectively. Finally, the feature F is reweighed along the c-
th channel to perform feature selection through emphasising
informative features and suppressing less useful ones

F̂ = F ·W. (9)

2.2.2. Extraction Node

In the extraction node, we propose an improved dense block
to abstract high-dimensional information through a set of
dense units. The features of these units will be concated and
the final output is obtained via local residual learning, as
shown in Fig. 2b. Given Fin as input of the extraction node
withD dense units, for the d-th dense unit, the input is a com-
posite of all the outputs from the previous layers and the o-
riginal input, which can be formulated as [Fin, F1, . . . , Fd−1].
Thus the output can be expressed as

Fd = D([Fin, F1, . . . , Fd−1]), (10)

where D indicates the operation in a single dense unit.
The details of D is shown in the right part of Fig. 2b. We

extract deep local features by using a convolutional layer par-
alleled with an mlpconv layer, and output G feature maps as
follows:

fd = H3×3([Fin, F1, . . . , Fd−1]), (11)

fmlpconv
d = Hmlpconv([Fin, F1, . . . , Fd−1]), (12)

where the superscript mlpconv denotes the operation of the
mlpconv layer. To control the depth of the output in one dense
unit, we use a convolutional layer with a kernel size of 1 × 1
to integrate the aforementioned features:

Fd = H1×1([fd, f
mlpconv
d ]), (13)
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Fig. 3. Loss (left) and PSNR (middle) of our aggregation
network at different D. The right plot reports the parameters
and PSNR of different methods evaluated on Set5 at factor 4.

in which feature Fd has G feature maps.
All the outputs of the dense units and input Fin are con-

cated as [Fin, F1, . . . , FD] after extracting several high-level
features using the same kind of dense unit. For residual learn-
ing, the local residual should maintain the same size as the
identity map, and hence we adopt a 1× 1 layer as follows:

FLRes = H1×1([Fin, F1, . . . , FD]), (14)

where FLRes denotes local residual.
Finally, the output of the extraction node is obtained by

Fout = FLRes + Fin. (15)

2.3. Implementation Settings

In the aggregation node, the output map number is cut in half
of the input, i.e., X in Eq. (6) has 2C feature maps. In the ex-
traction node, each convolutional layer and mlpconv layer are
followed by an ReLU except for the 1×1 convolutional layer.
We set the number of dense units as 10, i.e. D = 10. Con-
volutional layers in dense unit have G = 16 filters. The first
and the last convolutional layers have 64 and 3 filters, as we
output color images. Zero padding is used to keep the same
size before the upsacaling layer. For the upscaling layer, we
follow ESPCNN [5] to upscale the coarse resolution features
to the expected ones. We use 800 training images from the
DIV2K dataset [18] as the training set. In each training batch,
16 LR color patches of size 96 × 96 are extracted as inputs.
Our model is trained by the ADAM optimizor [19] with de-
fault settings. The initial leaning rate is set to 10−4 and then
decreases to half every 2×105 iterations of back-propagation.
We use PyTorch to implement our model with a GTX 1080Ti.

3. EXPERIMENTS

3.1. Model Analysis

The effective way to deepen our aggregation network is to
increase the number of the dense units in the extraction node.
Therefore, we investigate the influence of the hyperparameter
D, including the loss and PSNR during training process, as in
the left two plots of Fig. 3. From the results, we see that as D
increases from 8 to 10, the convergence of the loss function
and PSNR is quite similar, andD = 10 performs only slightly
better. Therefore, we set D = 10 as the default value. There
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Table 2. Public benchmark test results (PSNR/SSIM) for scale factor x2, x3, x4. Red: the best; blue: the second best.

Dataset Scale Bicubic SRCNN [6] VDSR [7] DRRN [9] LapSRN [20] SRDenseNet [14] DBPN [21] Ours

Set5
x2 33.65/0.9299 36.66/0.9542 37.53/0.9590 37.74/0.9591 37.52/0.9591 — 38.09/0.9600 38.12/0.9609
x3 30.39/0.8682 32.75/0.9090 33.67/0.9210 34.03/0.9244 33.82/0.9227 — — 34.55/0.9280
x4 28.42/0.8104 30.48/0.8626 31.35/0.8830 31.68/0.8888 31.54/0.8855 31.58/0.8853 32.43/ 0.8971 32.45/0.8972

Set14
x2 30.24/0.8688 32.45/0.9067 33.05/0.9130 33.23/0.9136 33.08/0.9130 — 33.85/0.9190 33.83/0.9195
x3 27.55/0.7742 29.30/0.8215 29.78/0.8320 29.96/0.8349 29.79/0.8320 — — 30.44/0.8448
x4 26.00/0.7027 27.50/0.7531 28.02/0.7680 28.21/0.7721 28.19/0.7720 28.36/0.7701 28.75/0.7861 28.80/0.7863

BSD100
x2 29.56/0.8431 31.36/0.8879 31.90/0.8960 32.05/0.8973 31.80/0.8950 — 32.27/0.9000 32.26/0.9005
x3 27.21/0.7385 28.41/0.7863 28.83/0.7990 28.95/0.8004 28.82/0.7973 — — 29.18/0.8069
x4 25.96/0.6675 26.90/0.7101 27.29/0.7260 27.38/0.7284 27.32/0.7280 27.38/0.7310 27.67/0.7393 27.69/0.7395

Urban100
x2 26.88/0.8403 29.50/0.8946 30.77/0.9140 31.23/0.9188 30.41/0.9101 — 32.56/0.9310 32.58/0.9320
x3 24.46/0.7349 26.24/0.7969 27.14/0.8290 27.53/0.8378 27.07/0.8272 — — 28.53/0.8596
x4 23.14/0.6577 24.52/0.7221 25.18/0.7540 25.44/0.7638 25.21/0.7553 26.05/0.7819 26.38/0.7950 26.42/0.7960

Table 1. Performance on different choices of extraction node
evaluated on the DIV2K validation dataset. Red: the best.

Method in [14] Method in [12] Ours

PSNR (dB) 39.635 39.781 39.928

are several alternatives to the extraction node. To validate
the effectiveness of our improved dense block, we conduct
experiments on different choices, such as the dense block in
[14] and residual dense block in [12], all of which have 10
layers with the growth rate of 32 to keep the parameters at the
same level. The results are reported in Table 1. After iterating
8× 105 back-propagation, our improved dense block obtains
the highest PSNR, benefited from the improvement of non-
linear ability when introducing the mlpconv layer.

3.2. Comparisons with State-of-The-Art Methods

We compare our SRDAN with 6 state-of-the-art SR methods,
including SRCNN [6], VDSR [7], DRRN [9], LapSRN [20],
SRDenseNet [14] and DBPN [21]. Four publicly available
datasets are used for evaluation such as Set5 [22], Set14 [23],
BSD100 [24] and Urban100 [25]. The results are reported
in Table 2. The two widely used metrics PSNR and SSIM
are evaluated on the SR results at the upscaling factors 2, 3
and 4. The blank in the table means that the corresponding
algorithm does not conduct at that factor in the original paper.
Due to the benefit of the progressive aggregation, our SRDAN
can achieve the best performance. Although the PSNR values
of our SRDAN are only slightly better than the latest results,
DBPN, our model has much less parameters, as shown in the
right plot of Fig. 3. Therefore, our SRDAN is able to reach a
better trade-off between the model size and the performance.

In Fig. 4, we display visual comparisons on three images
from BSD100. It can be seen that our method performs better

HR/PSNR

Bicubic/24.47 SRCNN/25.19 VDSR/26.05 DRRN/26.09

SRDenseNet/26.42LapSRN/26.17 DBPN/26.92 Ours/26.97

HR/PSNR

Bicubic/24.13 SRCNN/24.83 VDSR/25.65 DRRN/26.09

SRDenseNet/26.02LapSRN/25.71 DBPN/26.16 Ours/26.27

HR/PSNR

Bicubic/21.30 SRCNN/21.93 VDSR/22.34 DRRN/26.09

SRDenseNet/22.44LapSRN/22.40 DBPN/22.78 Ours/22.77

Fig. 4. Qualitative comparison of super resolution results for
“img78004” (top), “img86000” (middle), and “img253027”
(bottom) from BSD100 with an upscaling factor of 4.

on the structure of the objects, while other methods generate
results with noticeable artifacts.

4. CONCLUSION

In this study, we propose a novel deep aggregation network
called SRDAN for SISR, which can achieve the state-of-the-
art performance in terms of PSNR and SSIM. A key charac-
teristic of our SRDAN is to integrate the extraction node and
the aggregation node into a tree. This enables us to interac-
tively abstract the features and selectively preserve the useful
ones, which not only improves the non-linear and discrim-
inable ability, but also decreases the model size.
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