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ABSTRACT

Recently, deep neural networks have led to tremendous ad-
vances in image super-resolution. As a well-known one-
to-many inverse problem, the deep learning based methods
tackle this issue via large receptive field. By that, the deep
network could infer each output pixel from sufficient con-
text information. However, most existing studies use larger
kernel size or design a very deep network model to attain suf-
ficient receptive field. The computational cost dramatically
increments along with the training difficulty. Concerning this
problem, the goal of this paper is to design an effective and
trainable convolutional neural network. We proposed a multi-
scale dense network (MSDN) which is composed of deep
concatenation and basic blocks, namely multi-scale dense
block (MSDB). The proposed MSDB use different dilated
convolutions to gather multi-scale information; meanwhile
concatenating the different dilated convolution results mag-
nify the receptive field of a single layer. To facilitate the
training difficulty, there are the dense skip connections in
the proposed MSDB. Moreover, the deep concatenation and
global skip connection are also adopted for improving train-
ing furthermore. Consequently, we achieve a large receptive
field network without deeper structure. The experiments
indicate that the quality of the proposed MSDN yields the
state-of-the-art result.

Index Terms— Single-image super-resolution, learning-
based super-resolution, dilation convolution, image restora-
tion

1. INTRODUCTION

The goal of single image super-resolution (SISR) is enhanc-
ing resolution of a low-resolution image. This technology is
widely used in surveillance, satellite, and editing the old pic-
tures. As a classical problem, lots of SISR methods were in-
vestigated over the last decades. Those include interpolation-
based, self-similarity-based [1], and dictionary-based meth-
ods [2].

With the huge success in computer vision and signal pro-
cessing, there are several deep learning based SISR methods
proposed. Among them, Dong et al. first proposed a sim-

Fig. 1. Overview of the proposed multi-scale dense net-
work (MSDN). The MSDN mainly consists of three stages:
1) initial feature extraction stage, 2) multi-scale dense block
(MSDB) feature extraction stage, and 3) reconstruction stage.

ple three-layer structure called SRCNN [3]. Despite that the
quality does not take the lead of traditional methods, the sim-
ple end-to-end learning convolutional neural network (CNN)
method shows the great ability of mapping low-resolution im-
age to high-resolution image. After that, Kim et al. address
that the insufficient receptive field of the SRCNN causes qual-
ity degradation. Thus, they proposed very deep neural net-
work(VDSR) [4] which has 20 layers with 3×3 convolutional
kernels. Compared to the SRCNN(13×13), the receptive field
of VDSR is 41×41. Also, with the assistance of some training
tricks, such as global skip connection and adjustable gradient
clipping, the VDSR outperform the SRCNN and traditional
methods. Subsequently, Tai et al. proposed DRRN [5] and
MemNet [6]. The DRRN contains multi-path local skip con-
nections and recursive units, and the depth of network reach
to 52 layers. Based on the recursive manner, the MemNet use
the long-/short-term memory as a deep concatenation strategy
and the depth of network expands to 80 layers. However, both
the DRRN and the MemNet take bicubic image as network
input, the exact receptive field to the original low-resolution
image grows slower than the network depth.

Conversely, Lai et al. developed LapSRN [7] from the
Laplacian pyramid, and with the progressive reconstruction
LapSRN shows that the neural network could reconstruct
image well without the pre-upscaling low-resolution im-
age. Meanwhile, Ledig et al. proposed SRResNet [8] based
on residual block [9]. And several methods are proposed
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Fig. 2. The overview of the proposed MSDB. There are two
major parts in MSDB : 1)The dilation inception-like block. 2)
The dense skip connection.

based on SRResNet, such as EDSR [10] ,CARN [11], and
IDN [12]. There are also several super-resolution methods
[13][14] which are inspired by DenseNet [15].

According to the recent challenges with respect to super-
resolution [16][17], the performance improvements of super-
resolution deep networks have led to increases in their depth.
That means the quality improvements come from either re-
ceptive field or parameter number. However, there are some
analytic studies in [7][5][11] which show that the parameter
number is not the key factor to performance gain. Those stud-
ies illustrate the importance of the receptive field.

To the mid-level vision tasks, the receptive field is also
a critical problem, such as [18] [19]. Among them, Chen et
al. design the large receptive field network with the help of
the atrous/dilation convolution [20], and achieve remarkable
performance in semantic segmentation.

Inspired by the dilation convolution, we proposed a multi-
scale dense block to achieve a large receptive field network.
As shown in Figure 2. The proposed MSDB consists differ-
ent dilation convolution similar to inception block [21]. To
handle the sparse sampling of dilation convolution, we adopt
dense connections to attain dense sampling to the input hid-
den features. The proposed network contains eight MSDB,
and output of each MSDB would be concatenated to the fi-
nal reconstruction stage. Overview of the proposed multi-
scale dense network is shown in Figure 1. Li et al. share
the same idea [22] to the proposed MSDN. However, Li et al.
adopt 5×5 filters as a larger-scale feature extractor, which is
more inefficient than dilation convolution and increases pa-
rameter number. The dilation convolution is also adapted to
handle image denoise problem in the IRCNN [23] proposed
by Zhang et al. and DDRN [24] proposed by Wang et al. .
Nevertheless, they both simply replace the 3×3 with dilation
convolution. Shi et al. [25] and Lin et al. [26] both proposed
super-resolution network with dilation convolution. However,
the quality of their proposed network do not attain the state-
of-the-art result

The main contributions of the proposed method are sum-
marized as follows: 1) we proposed a large receptive field

network for single-image super-resolution. The proposed
MSDN gather large-scale information via multi-scale dila-
tion convolutions. The large receptive field assists MSDN in
attaining the state-of-the-art result. 2) To handle the sparse
sampling issue of large dilation convolution, the proposed
MSDB contains branches as same as inception block and
concatenates the different scale features together. Further-
more, the dense connections confirm that the output features
of MSDB densely sample the input features. 3) With the
MSDB and the deep concatenation, the proposed MSDN
achieve state-of-the-art results with comparative fewer lay-
ers. It means that the proposed technologies in MSDN could
improve the representational ability of the network.

2. PROPOSED METHOD

2.1. Network Architecture

As shown in Figure 1, the proposed MSDN mainly consists
of three stages: initial feature extraction, multi-scale dense
block feature extration, and reconstruction stage.

There is only one convolutional layer to extract the ini-
tial hidden feature Hinit from the low-resolution input image
ILR. The initial feature extraction layer is formulated as:

Hinit = φ (Θ3×3 (ILR, winit)) (1)

where winit denotes the weights of the initial feature extrac-
tion layer. Θ3×3 and φ are the 3×3convolution and activation
function operator. After that, Hinit is the input of multi-scale
feature extraction with the proposed MSDB. The successive
hidden feature from the first MSDB would be

Hms1 = β1 (Hinit, wms1) (2)

where the β1 denotes the operation of first multi-scale dense
block which will be described in next subsection. And wms1

is the weights of theMSDB1. In the MSDB feature extration
stage, there will be N multi-scale dense block to extract suf-
ficient feature from the large receptive field. The formulation
of MSDB feature extration stage is as following:

HmsN = βN (..βn (β1 (Hinit, wms1) .., wmsn) .., wmsN )
(3)

where βn and wmsn are the operation function and weights of
n-th MSDB. And the multi-scale hidden features extract from
that is denoted by Hmsn .

After the initial feature extraction and multi-scale dense
block feature extraction stages, all of the hidden features
(Hinit, Hms1 , ...,HmsN ) would be concatenated and pass to
a depth-wise convolutional layer. The bottleneck layer re-
duces the dimension of the concatenation hidden features,
and send to sub-pixel convolutional layer and pixel shuf-
fler to enlarge the hidden features to the desired resolution;
the detail could be found in ESPCN [27]. Refer to VDSR
[4]; we adopt the global skip connection to add the bicubic
high-resolution image to the network output. Therefore, the
high-resolution hidden features would generate a one-channel
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Table 1. The experiment on different dilation inception block of the proposed MSDB.
dilation = 1

√ √ √ √ √

dilation = 2
√ √ √ √ √

dilation = 3
√ √ √ √ √

dilation = 4
√ √ √ √ √

PSNR 29.01 28.90 28.82 28.75 29.03 29.02 29.08 29.01 29.05 29.06 29.22

Table 2. Different structure experiments.
DenseBlock

√ √ √ √

ResBlock
√

Deep concat
√ √ √

Residual
√ √ √

PSNR 29.22 29.10 29.03 29.15 28.92

gray-scale residual image or a three-channel color residual
image. This strategy is to reduce the mapping difficulty
from dense high-resolution image to sparse high-resolution
residual.

2.2. Multi-Scale Dense Block

As described in Sec.1, in order to increase receptive field, we
proposed the multi-scale dense block. The concept of MSDB
is shown in Figure 2. There are two major parts of MSDB.
One is the dilation inception-like block; which gathers multi-
scale information with dilation convolutions. The dilation in-
ception block consists of four different dilation settings con-
volution. Another part is dense skip connection; which com-
pensates the sparse sampling of large dilation convolution.

The first dilation inception block would extract input hid-
den feature as follows:

Hn
d1

= Θ1×1

(
[Hn

d11
, Hn

d12
, Hn

d13
, Hn

d14
], wn

b1

)
(4)

Hn
d1k

= σ
(
Θ3×3dk

(
Hmsn−1 , w

n
d1k

))
(5)

where the Θ3×3dk denotes the k dilation convolution, and
wn

d1k
is the corresponding weights. The [] is concatenating

operation, and the output of first dilation inception block is
denoted by Hn

d1
. After that, the following m-th dilation in-

ception block take input as:

Θ1×1

(
[Hmsn−1

, Hn
d1
, ...,Hn

dm−1
], wn

cm

)
(6)

The dense connection would concatenate all the output fea-
tures of previous dilation inception block including the in-
put features of this MSDB. Then a 1 × 1 convolution reduce
the feature dimension to prevent the growth of computing re-
quirements.

2.3. Implementation Details

In the proposed multi-scale dense net, the filter number of the
initial feature extraction layer is 32, and each dilation convo-
lution in MSDB also has 32 filters. After the concatenating
of dilation inception blocks, the 1×1 convolution will reduce
the feature dimension back to 32. Also, the bottleneck con-
volution in the reconstruction stage has 32 filters, either. The

number of filters in the sub-pixel layer depends on the scaling
factor. The negative slope is 0.2 to all the LeakyReLUs. The
final network contains 8 MSDB, and each MSDB has four di-
lation inception block. It means that the depth of the proposed
MSDN is about 34 layers. The receptive field of each output
pixel is 261×261 to the input low-resolution image.

We take DIV2K as the training dataset. In each training
batch, 8 low-resolution patches with the size of 128128 would
be cropped from dataset randomly. The rotation, horizontal,
and vertical flipping are also adopted as data augmentation.
The optimizer we used is Adam by setting β1 = 0.9, β2 =
0.999, and ε = 10−8. The learning rate begins at 10−5 and is
halved every 10000 iterations. The weights of all the filters
are initialized by [28], and biases are set to zeros.

3. EXPERIMENTAL RESULT

3.1. Network Analysis

To understand the properties of the proposed multi-scale
dense block, we first analyze the dilation settings. We main-
tain the total number of filters in the dilation inception block.
It means that if dilation inception block contains T different
scales, there would be 128/T in each dilation convolution.
The experiments are summarized in Table 1, and the PSNR
results are all evaluated in BSD100 benchmark with scaling
factor 3×. We found that if there is only one dilation con-
volution in MSDB, the simple 3×3 and dilation = 1 would
have the better result. Conversely, when the dilation incep-
tion block contains more than one dilation setting, the large
dilation convolution would be more favorable for the network
performance.

We also analyze the network performance of the differ-
ent structures. The basis multi-scale block could be Dense-
Blcok or ResBlcok. Both of them are the popular basic unit
in the deep learning literature. However, in the experiment of
our multi-scale super-resolution network, the DenseBlock is
slightly better than ResBlock. The performance increments
with deep concatenation and global skip connection are also
summarized in Table 2.

3.2. Comparison with the-state-of-the-arts
Table 3 summarizes the quantitative comparison of the pro-
posed MSDN to the-state-of-the-art. There are VDSR [4],
LapSRN [7], DRRN [5], IDN [12], and MSRN [22]. We cal-
culate the PSNR and SSIM on the well-know benchmarks;
which are Set5, Set14, BSD100, and Urban100. As de-
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Table 3. Quantitative comparisons of state-of-the-art methods: PSNR/SSIMs for ×2, ×3 and ×4 in benchmark.
Dataset scale Bicubic VDSR [4] LapSRN [7] DRRN [5] IDN [12] MSRN [22] Ours

×2 33.66 / 0.9299 37.53 / 0.9587 37.52 / 0.9591 37.74 / 0.9591 37.83 / 0.9600 38.08 / 0.9605 38.13 / 0.9605
Set5 ×3 30.39 / 0.8682 33.66 / 0.9213 33.81 / 0.9220 34.03 / 0.9244 34.11 / 0.9253 34.38 / 0.9262 34.46 / 0.9272

×4 28.42 / 0.8104 31.35 / 0.8838 31.54 / 0.8852 31.68 / 0.8888 31.82 / 0.8903 32.07 / 0.8903 32.32 / 0.8943
×2 30.24 / 0.8688 33.03 / 0.9124 32.99 / 0.9124 33.23 / 0.9136 33.30 / 0.9148 33.74 / 0.9170 33.87 / 0.9183

Set14 ×3 27.55 / 0.7742 29.77 / 0.8314 29.79 / 0.8325 29.96 / 0.8349 29.99 / 0.8354 30.34 / 0.8395 30.51 / 0.8403
×4 26.00 / 0.7027 28.01 / 0.7674 28.09 / 0.7700 28.21 / 0.7721 28.25 / 0.7730 28.60 / 0.7751 28.82 / 0.7853
×2 29.56 / 0.8431 31.90 / 0.8960 31.80 / 0.8952 32.05 / 0.8973 32.08 / 0.8985 32.23 / 0.9013 32.34 / 0.9011

BSD100 ×3 27.21 / 0.7385 28.82 / 0.7976 28.82 / 0.7980 28.95 / 0.8004 28.95 / 0.8013 29.08 / 0.8041 29.22 / 0.8062
×4 25.96 / 0.6675 27.29 / 0.7251 27.32 / 0.7275 27.38 / 0.7284 27.41 / 0.7297 27.52 / 0.7273 27.70 / 0.7314
×2 26.88 / 0.8403 30.76 / 0.9140 30.41 / 0.9103 31.23 / 0.9188 31.27 / 0.9196 32.22 / 0.9326 32.51 / 0.9342

Urban100 ×3 24.46 / 0.7349 27.14 / 0.8279 27.07 / 0.8275 27.53 / 0.8378 27.42 / 0.8359 28.08 / 0.8554 28.63 / 0.8593
×4 23.14 / 0.6577 25.18 / 0.7524 25.21 / 0.7562 25.44 / 0.7638 25.41 / 0.7632 26.04 / 0.7896 26.25 / 0.7931

(a) Bicubic. (b) VDSR[4]. (c) LapSRN[7]. (d) DRRN[5]. (e) Our MSDN. (f) Ground Truth.

Fig. 3. Visual comparison in scaling factor 3. “253027.jpg” image from BSD100 benchmark.

(a) Bicubic. (b) VDSR[4]. (c) LapSRN[7]. (d) DRRN[5]. (e) Our MSDN. (f) Ground Truth.

Fig. 4. Visual comparison in scaling factor 4. “img 061.png” image from BSD100 benchmark.

scribed in Sec 1, VDSR [4] and DRRN [5] use bicubic inter-
polation result as input image. Therefore, the exact receptive
fields are 41×41 and 103×103 divided by scaling factor. And
the LapSRN [7] use the special structure, the receptive fields
are about 15×15, 20×20, and 22×22 in scaling 2×, 3×, and
4×. And IDN [12] and MSRN [22] have 53×53 and 69×69
respectively. The proposed MSDN have the 261×261 recep-
tive filed. Note that the parameter number of ours is half than
that of MSRN [22]. The receptive field is an essential factor to
the hard cases; especially the scaling 4× in the BSD100 and
Urban100 benchmark. There are visual comparisons in Fig-
ure 3 and Figure 4. The crop regions are high-frequency sub-
images; which usually cause aliasing in the super-resolution
problem. However, with the help of large receptive field, the
proposed MSDN could refer to the high-resolution output pix-
els based on sufficient context information. It could be found
at Figure 3(e) and Figure 4(e).

4. CONCLUSION
In this paper, we presented a large receptive field network for
single-image super-resolution; which is based on the multi-

scale dense block. The proposed MSDB indicated that gath-
ering sufficient context information is very useful for network
performance. With the help of dilation inception block, the
receptive field of MSDN reaches 261×261 via only 34 lay-
ers. The computational cost and number of parameters are
fewer than the-state-of-the-art relatively, and the results be-
yond them at the same time. In the future, the recursive man-
ner could be adopted into the proposed MSDN. The weights
of each MSDB could be shared; that will reduce lots number
of parameters. Furthermore, we think that the different di-
lation convolution in one dilation inception block could also
share weights to each other. Lots of traditional vision methods
have already demonstrated that the scale-invariant is a good
property for feature extraction.
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