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ABSTRACT

Generative Adversarial Network (GAN) has been widely ap-
plied on Single Image Super-Resolution (SISR) problems.
However, there can be quite a variability in the results from
the GAN-based methods. In some cases, the GAN-based
methods might cause structure distortion, which can be eas-
ily distinguished by human beings, especially for artificial
structures, because the methods only focus on the perceptual
quality of the whole image. On the other hand, PSNR-
oriented methods can prevent structure distortion but with
overly smoothed context. To overcome these problems, we
propose a deep neural net refiner for SISR methods, not
only improving perceptual quality but also preserving context
structures. In the experiments, our model qualitatively and
quantitatively performs favorably against the state-of-the-art
SISR methods.

Index Terms— Super-Resolution, Channel Attention,
Generative Adversarial Networks

1. INTRODUCTION

Single Image Super-Resolution (SISR) is a technology that
aims to reconstruct a high-resolution (HR) image from a low-
resolution (LR) image. SISR is an ill-posed problem [1]. The
texture details in the reconstructed image is typically absent.
Two methods try to optimize reconstructed results in differ-
ent ways: pixel-wise differences minimization and perceptual
quality optimization. Pixel-wise differences minimization, or
called PSNR-oriented methods [2–6], are dedicated to mini-
mize the pixel-wise differences between reference and recon-
structed images. Although these methods derived outstanding
performance on PSNR and Structure Similarity (SSIM), the
results might have trouble satisfying Human Visual System
(HVS).

The other approach focused on perceptual quality [7–10].
Ledig et al. [1], and Sajjadi et al. [11] used Generative Adver-
sarial Networks (GAN) [12] to reconstruct texture details to
make the images look more photo-realistic. Wang et al. [13]
introduced Residual-in-Residual Dense Block (RRDB) for
the generator, which has higher capacity and is easier to train.
Although these methods produced better perceptual quality,
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Fig. 1: Qualitative comparisons of our method with DBPN
[6], RCAN [5], EnhanceNet [16], and ESRGAN [13] on ×4
super-resolution. Our result is derived by using RCAN results
as our input.

these methods easily cause structure distortion, and generate
unpleasing artifacts. According to the observations from 2018
PIRM challenge report [14], GAN-based methods generally
derived even worse perceptual quality on artificial structures,
such as buildings, than PSNR-oriented methods. One possi-
ble reason is that GAN-based methods tend to overly enhance
edges to make generated images look more ”real” [15]. This
approach might work on some natural images, such as animal
fur, but can be easily aware when it is applied on artificial
structures, which are generally neat and tidy.

We observe PSNR-oriented methods can preserve context
structure, and the results from GAN-based methods can bet-
ter fulfill HSV. Taking the advantages from both methods, we
propose a refiner for SISR methods. This refiner aims to over-
come the overly smoothed problem of PSNR-oriented meth-
ods, and also preserves its advantage on structure restoration.
We use the results from general SISR methods as input, which
makes proposed refiner focus on the inadequate parts of the
input. Inspired by [5], we use Channel Attention (CA) on the
generator to choose better feature maps to fulfill different in-
put contexts. CA is also applied to the discriminator to make
it pay attention to more important inadequate contexts. Since
we would like to preserve the structure, which has been re-
stored by the SISR methods, we apply an identity mapping
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Fig. 2: Framework of our proposed refiner. The input ĨSR is an image from a general SISR network, and the output ISR is our
result. IHR represents the high-resolution image.

shortcut [17] on the generator. By doing so, the refiner can
adaptively adjust the reconstruction structure and perceptual
quality. In addition, we use the feature maps of our discrim-
inator as part of our perceptual loss. This strategy not only
allows our discriminator to focus on the regions that we ac-
tually care about, it also encourages our generator to produce
patterns that satisfy perceptual quality. We use Perceptual In-
dex (PI) and Root Mean Square Error (RMSE) as our bench-
mark [14]. The qualitative and quantitative results show that
our proposed method performs favorably against the state-of-
the-art methods.

2. PROPOSED METHOD

2.1. Brief Review of Channel Attention

Reconstructing the SISR image is an ill-posed problem. The
distribution of natural feature patches might exist in various
manifolds. CNN models try to find a universal mapping from
low-resolution patches ILR to high-resolution patches ISR.
Wang et al. proposed RCAN [5], which used channel atten-
tion (CA) to adaptively weight the features maps by consider-
ing interdependencies among the channels. The main idea of
this mechanism is to make the network focus on more infor-
mative features according to different input images. However,
they only applied CA on LR images before performing SR.
Thus, image structures in SR outputs might not be properly
preserved.

2.2. Proposed Architecture

An overview of our proposed network is shown in Fig. 2. The
input of our framework ĨSR is an image that has been recov-
ered by a general SISR network, and the output ISR is our re-

sults. Based on Wasserstein Generative Adversarial Network
(WGAN) [18,19], we apply CA on our generator and discrim-
inator to compensate the missing informative details of input
SR images, and to resolve the perceptual quality problem. In
addition, in order to preserve the context from inputs, we also
use an identity mapping shortcut from the input to the last
convolution layer to maintain the main structure of the im-
ages and make the network pay more attention to the residual
differences between the inputs and the reference images.

As illustrated in Fig. 2, our CA uses channel-wise
global average pooling to compress the feature maps F :
{f1, f2, . . . , fn} into nweightings, and a simple gating mech-
anism with leaky ReLU and Sigmoid activation function is
applied to generate the final weightingsW : {w1, w2, . . . , wn}.
The nth feature map is derived by multiplying the weightings
respectively:

f ′n =Wn · fn (1)

In our discriminator, we use stride to downscale the fea-
ture maps and apply CA on multi-scale to preserve the fea-
tures and the valuable components. In our generator, we only
apply single scale CA on the high-resolution feature maps to
focus on the informative features. Different from RCAN, our
generator dedicates to refine the fine scale images. Because
the lower scale context has been reconstructed well by the
SISR methods, our refiner only needs to focus on the miss-
ing fine details of the SR images. We show the qualitative
comparisons of aggregated feature maps before and after be-
ing weighted by CA, and show the multi-scale quantitative
comparisons in Section 3.
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Fig. 3: Qualitative comparisons of EnhanceNet [16], ESRGAN [13], and our method on ×4 super-resolution. Our results are
derived by using RCAN results as our input.

(a) (b) (c) (d)

Fig. 4: Qualitative comparisons of aggregated feature maps.
(a) High-resolution image, (b) Super-resolution images, (c)
Feature maps of the generator, (d) Feature maps of the
discriminator. The first and second row show the results
with/without channel attention respectively.

2.3. Objective Function

In our generator, we simply choose Mean Square Error
(MSE) term as the regularizer L2(G) because the outputs
are the SR results with channels properly attended. In addi-
tion, inspired by SRGAN [1], we add a perceptual loss term as
another regularizer Lp(G,D). Instead of using VGG loss [1],
we reuse the output of the discriminator D, which represents
a high-level feature of the images, to be our perceptual loss,
which itself is a MSE loss of a certain layer output of the
discriminator (after activation function). The θi indicates the
ith layer of the feature map of our discriminator.

L2(G) = EIHR,ĨSR [(I
HR −G(ĨSR))2] (2)

Dataset Methods (PI/RMSE)
EnhanceNet ESRGAN Ours

Set5 3.865/9.879 3.871/7.919 3.759/7.750
Set14 3.053/15.495 2.916/15.139 2.987/13.126

BSD100 2.922/16.887 2.489/16.498 2.461/14.824
Urban100 3.654/19.751 3.770/18.939 3.458/16.295

Table 1: Quantitative comparisons of EnhanceNet [16], ES-
RGAN [13], and our method on ×4 super-resolution. Our
results are derived by using RCAN [5] results as our input.
Red color indicates the best performance.

Lp(G) = EIHR,ĨSR [(θi(I
HR)− θi(G(ĨSR)))2] (3)

Ltotal = L(G,D) + λ1L2(G) + λ2Lp(G) (4)

We optimize the total loss function Ltotal in an alternative
manner to solve the adversarial min-max problem. L(G,D)
is the WGAN loss, and the coefficients λ1 and λ2 in our for-
mula are two fixed values in our proposed models.

3. EXPERIMENTS

3.1. Model Configuration

The input images are from RCAN [5] without any modifica-
tion, and the patches have size 48 × 48 with RGB channels.
We use three residual channel attention blocks [5] with an
identity mapping shortcut as our generator. The discriminator
applies three CA blocks with three skip-connections as shown
in Fig. 2. The convolution kernels’ size are 5 × 5 with 4 dif-
ferent depth, and we downscale the size with stride 2. The 3rd
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CA IS PI/RMSE√ √
3.458/16.285√

× 3.476/16.292
×

√
3.527/16.582

× × 3.628/16.715

Table 2: Overall quantitative comparisons for showing the ef-
fect of each components on Urban100. CA: Channel attention
on the discriminator. IS: Generator shortcut from the input to
the last convolution layer. Red color indicates the best perfor-
mance.

layer output is used to estimate our proposed perceptual loss.
We use a high quality image datasets DIV2K [20] as our

training set, and evaluate our proposed model on various com-
mon datasets. The test datasets: Set5, Set14, BSD100 and
Urban100, are performed with ×4 scale factor between LR
and HR. The minibatch size is 16, and we train our network
with ADAM optimizer by setting β1 = 0.9, β1 = 0.999,
ε = 10−8. The learning rate is initialized as 10−4 to train 105

iterations. We update the generator once in every 5 iterations
on the discriminator, and the coefficients of the regularizer in
generator λ1 is 10 and λ2 is 0.25.

3.2. Quantitative and Qualitative Results

In this section, we review the quantitative and qualitative per-
formance to the other methods. Table 1 shows quantitative
comparisons on ×4 SR images. Our results are derived by
using RCAN restored images as the input, and the results
of other methods are released by the authors. Our proposed
method has better performance in most of cases, especially
in Urban100. There are abundant artificial structures in this
dataset, and it is hard to be reconstructed by the previous
GAN-based methods. Our method shows superior perfor-
mance both in RMSE and PI.

In Fig. 3, we show the qualitative comparisons on ×4
SR images. We can observe that the other methods repro-
duced blur or unpleasing textures on the lines or edges but
our method can reconstruct them with correct details. These
comparisons show that our refiner can overcome the structure
preservation problem, mentioned in [14].

The explicit the advantages of CA are shown in Fig. 4.
After applying the weightings, we can find that our discrim-
inator puts more attention on the structured high-frequency
regions. Otherwise, without CA, the discriminator might fo-
cus on the flat surface, which is not the region that we actually
care about. As same as the discriminator, Fig. 4 also shows
that our generator with CA has the same behavior. They both
highlight the same regions and reconstruct better details on
the structured parts of the image.

Dataset PI Before/After Refinement
EDSR DBPN RCAN

BSD100 5.402/2.585 5.622/2.566 5.136/2.461
Urban100 4.991/3.540 5.264/3.497 4.976/3.458

Table 3: Overall quantitative comparisons for showing the
effect of our refiner with different inputs. Red color indicates
the best performance.

CA Placement 1st Scale 3rd Scale All Scales

PI/RMSE 3.547/16.388 3.569/16.384 3.458/16.285

Table 4: Overall quantitative comparisons for applying CA
on different scales on Urban100. 1st Scale and 3rd Scale
mean CA is only applied on 24 × 24 and 6 × 6 scale of the
discriminator. Red color indicates the best performance.

3.3. Ablation Study

In order to clarify the effect of the components in proposed
refiner, we further discuss the performance with and without
these components in Table 2. All configurations use RCAN
output as our input. According to the results, we observe that
CA component on the discriminator plays an important role
in improving PI, and IS component is able to significantly
reduce RMSE. The configure with CA and IS achieves the
best performance on both PI and RMSE.

Since our proposed refiner is designed for general SISR
methods, we compare the results based on different input
methods in Table 3. The results show that our refiner did
significantly improve PI for all methods.

The discriminator of our refiner aims to focus on inad-
equate parts of SISR results in multi-scale. In Table 4, we
would like to compare the effects of CA placements on the
discriminator in different scales. CA in the finest scale (24×
24 scale) has the most abundant features from large scale in-
put, and in the coarsest scale (6 × 6 scale) has the highest
level features, extracted by the previous layers. According to
the Table 4, the refiner achieves the best performance when
CA is applied on all scales. We can conclude that both low-
level and high-level features are important to the discrimina-
tor, and CA assists our discriminator to extract informative
features for all scales.

4. CONCLUSIONS

We propose a refiner with channel attention to improve per-
ceptual quality of SISR methods and overcome the structure
preservation problem of GAN-based methods. The weighted
feature maps of our refiner demonstrate that CA can help our
refiner to focus on the informative context and generate more
pleasing details. The ablation studies clarify the effectiveness
of the components, and the qualitative and quantitative results
show the feasibility of our proposed framework.
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