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ABSTRACT

In this paper, we propose a patch-wise super-resolution (SR)
method that combines an external-sample classification tree
and a nonlinear-mapping learning stage to simultaneously
guarantees reconstruction quality and speed at the stage of
patch representation and mapping. We use the low-resolution
(LR) to high-resolution (HR) mapping kernel of each patch-
pair sample (called SIMK) to complete classification by
binary tree branching and provide reasonable training sets
for mapping-learning. Then a high accuracy but low cost
lightweight network is learned for each tree node to choose
the reasonable branch path for the testing LR patches. In the
mapping-learning stage, the nonlinear mapping for each class
is represented as a full-connected network, which provides
satisfying generalization ability for LR patch reconstruc-
tion. Comparing with state-of-the-art methods, our approach
achieves real-time (>24fps) SR of realistic vision and high
quality for different upscaling factors.

Index Terms— Image super-resolution, external learn-
ing, classification, nonlinear regression

1. INTRODUCTION

Single image super-resolution (SR) is a significant basic tech-
nique in the fields of computer vision. In general, SR prob-
lem is supposed to be a linear degradation model [1], the
low-resolution (LR) image is generated from high-resolution
(HR) one suffering a blurring process and a down-sampling
process. SR methods aim to achieve the inverse process of
the degradation model, whereas this is well known as an ill-
posed inverse problem [1], because the model is nonlinear and
there may not exist a unique HR image generated from one
input LR image. Various SR methods have been proposed in
recent years to improve image reconstruction quality, which
can be categorized as interpolation-based [2], reconstruction-
based [3, 4] and learning-based methods [5, 6].

Currently, state-of-the-art SR reconstruction qualities are
almost obtained by external-example learning-based meth-
ods [7, 8], which endlessly explore more appropriate patch
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representations and mapping functions to accurately express
the LR-to-HR relationship by external samples. Generally,
patch representation and mapping stages are the important
parts that affect quality and speed of SR [8]. Patch represen-
tation based on sparse-coding [9, 10] usually learns a joint
dictionary of HR-to-LR to synthesize generative HR patches
with sparse coefficients. As improved methods, ANR [7] and
A+ [11] use the least-squares to combine the joint dictionary
into a mapping matrix. Classification-based patch represen-
tation [12, 13] uses gradient features of LR patch to classify
LR-HR patch-pair samples and learn a linear mapping for
each class to generate desired HR patches from the testing
LR patches. Those sparse-coding and classification-based
patch representations can quickly characterize samples, but
they only consider the features of LR patch and ignore the
LR-to-HR mapping relationship of each sample, which will
cause inaccurate patch representation. For the mapping stage,
since SR is an ill-posed inverse problem, linear-mapping usu-
ally lead to higher regression error and affect the restoration
quality. As a hotspot, CNN-based methods [8, 14] avoid this
problem and achieve amazing performance by directly creat-
ing end-to-end networks between LR and HR images. The
multi-layer network can store a widely compatible mapping
relationship but a vast number of network parameters are hard
to converge and will lead to the runtime increasing. Besides,
the large receptive field (i.e. patch size) that matches with
the multi-layer structure may ignore the feature extraction of
tiny local details, which will lead to the cartoon effect and
unnatural visual of reconstructed HR images.

In this paper, we propose a real-time and high quality SR
method that combines a sample classification-tree based on
Sample Individual Mapping-Kernel (SIMK) and a mapping-
learning stage based on nonlinear regression, which simul-
taneously guarantees the reconstruction quality and speed
from patch-representation and mapping-learning stages. In
the patch-representation stage, we use the SIMK that is the
LR-to-HR mapping kernel of each sample, to classify sam-
ples and obtain reasonable sample sets for mapping-learning,
which also helps ensure both global and detail regions re-
construction by setting a small patch size. In the mapping-
learning stage, one nonlinear mapping is represented as a
lightweight network for each class, which provides satisfying
generalization ability for LR patch reconstruction.
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2. PRELIMINARY

Our method builds on theories from mapping-learning-based
SR algorithms. Generally, single image degradation process
can be represented by the following equation:

Y = DBX + n (1)

where Y is the LR image generated from HR imageX suffer-
ing a blurring process with the operator B, a down-sampling
process with the operator D and an additive noise n. SR prob-
lem can be formulated as a Maximum a posteriori estimation:

X̂ = argmax
X

f(X,D,B, σ2 |Y )

= argmin
X

L(Y
∣∣X,D,B, σ2 ) + L(X)

= argmin
X

1

2σ2
‖Y −DBX‖22 + L(X) (2)

where f(.) is the prior distribution, L(.) = −log(f(.)) and
we assume the noise term of equation (1) is follow Gaussian
distribution with parameter σ. L(X) is the prior constraint
which we will obtain from external LR-HR patch-pair sam-
ples by mapping-learning.

3. THE PROPOSED SUPER-RESOLUTION METHOD

In this section, we propose a real-time and high-quality SR
method with the prior constraint obtainment by sample clas-
sification and mapping learning. We classify external sam-
ples based on SIMK and learning one LR-to-HR nonlinear
mapping for each class, which aims to solve the optimization
problem similar to [12, 13, 15]:

min
c,Mc

k∑
c=1

∑
li∈c

‖hi −Mcli‖22, (3)

where li/hi are LR/HR patch vectors collected from training
set, c is the class label and Mc means the desired nonlinear
mapping of class c. Then the equation (2) can be represented
as follows to generate an SR image X̂:

X̂ = argmin
X

‖Y −DBX‖22+λ
∑
i

‖QiX −Mciyi‖
2
2 (4)

where yi is an LR patch collected from the testing LR image
Y , and Qi is the matrix extracting the corresponding local
patch. ci means the class label of yi and Mci is the corre-
sponding mapping. Therefore the main aim of the training
process is to achieve appropriate sample classification and
learn reasonable mappings to optimize equation (3).

As Fig. 1 shows, in the training process, we use a binary-
tree to classify samples based on SIMK-clustering. Then a
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Fig. 1. The flow chart of our method.

branch Neural Network (b-NN) is learned for each non-leaf
node and an nonlinear mapping Neural Network (m-NN) is
learned for each class (leaf node). In the testing process, LR
patches search branch paths and match with different classes
by b-NNs and complete upsampling with the corresponding
m-NN. Then the generated HR image is further optimized by
equation (4). Next we will introduce our method in detail.

3.1. Sample Branch Tree Based on SIMK-Clustering

Without performing bicubic initial upsampling, our method
directly uses the neighborhood patch to amplify each pixel of
LR image, which effectively improves the run speed similar
to [12]. Assume that the upsampling factor is s, we collect
overlapping LR patches l ∈ Rn×n from LR images and cor-
respond HR patches h ∈ Rs×s of HR images directly.

Different from the methods which distinguish features of
LR patch to classify LR-HR patch pairs, our method uses
SIMK, which is the LR-to-HR mapping kernel of each sam-
ple, as the classification basis. Consider a vectorized sample
pk : {lk, hk}, there exists a mapping relationship as hk =

mklk and we define the matrix mk ∈ Rs2×n2

as the SIMK of
the sample pk, which is calculated as mk = hkl

−1
k . Then the

optimization equation (3) can be further expressed as:

min
c,Mc

k∑
c=1

∑
mi∈c

‖(mi −Mc)li‖22. (5)

This equation clearly shows that for LR-HR patch-pairs in one
class c, the aggregation degree of set {mi ∈ c} is more di-
rectly affecting the accuracy of the regression result Mc than
the aggregation degree of set {li ∈ c}. To quantitatively com-
pare two sample classification methods, we randomly extract
0.4 million samples into 200 groups to compare the difference
of regression errors. For each group, we perform l-based and
m-based clustering respectively and extract samples {plk} and
{pmk } (k = 1,..., 500), which are closest to clustering centers.
Then we learn mappings as [12], obtain regression errors by
calculating Mean Square Error and show the histograms in
Fig. 2. High regression accuracy corresponds small error, so it
is obvious that the SIMK-based classification we use is more
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Fig. 2. The comparison of two different sample classifica-
tions. Blue (orange) bars represent the histogram of regres-
sion errors based on LR patch (SIMK) classification.

accurate than the LR patch-based method.
We utilize the binary decision tree to perform SIMK-

based sample classification and aim to approach the ide-
alized optimal result of the equation (2). LR-HR patch-
pairs {pi|pi = (li, hi,mi)} collected from training set are
branched into two child nodes on each non-leaf by k-means
clustering of {mi}, and finally classified into leaf nodes.
Considering the high run cost and the effect of feature cor-
relation, we use PCA to reduce the dimension of m before
the clustering. Fig. 3 shows the clustering process of one
non-leaf node, which includes sample branch process, b-NN
and m-NN learning process, and validation process.

3.2. Branch Network Learning for The Testing LR Patch
and Mapping Learning Based on Nonlinear Regression

One important problem of our method is how to find the right
branch path for LR patches in the testing process, because
there is no SIMK during this stage. Duan et al. [15] uses
Naive Bayes Classifier to learn probabilistic models for LR
patches, but the accuracy only reaches 70%. To further im-
prove the classification accuracy, as Fig. 3 shows, we learn
a full-connected neural network b-NN with one hidden layer
for each non-leaf node, where the corresponding branch la-
bels {labi|lab ∈ {−1, 1}} are obtained by clustering {mi}.
The cost function is expressed as follows:

Lb−NN = min
W,b

∑
i

‖labi − f(W ′ · f(Wli + b) + b′)‖22

+λ(‖W‖2F + ‖W ′‖2F ),
(6)

where W/W ′ denotes the connection weight matrix of in-
put/hidden layers, b/b′ denotes the corresponding bias values,
and f(.) is a group of non-linear sigmoid functions. Then net-
work parameters can be updated iteratively by BP algorithm.

External LR-HR patch pairs are collected from natural im-
ages and mapping relationships between LR and HR patches
exist uncertainty, so linear regression is difficult to fit them
well. Therefore, we use a BP network to represent the non-
linear mapping relationship and achieve the generalization of
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Fig. 3. The flow chart of non-leaf node branching process.

the mapping. As Fig. 3 shows, similar to b-NN, we also use a
full-connected network to learn nonlinear mapping m-NN for
each node. These m-NNs memorize the inherent regularity of
extracted datas into the network connection weight, which has
outstanding approximation ability and low complexity. The
cost function of 2-layer m-NN is expressed as follows:

Lm−NN = min
W,b

∑
i

‖hi − f(W ′ · f(Wli + b) + b′)‖22

+λ(‖W‖2F + ‖W ′‖2F ).
(7)

The m-NN aims to represent the intrinsic mapping relation-
ship between the patch-level input and output, so one or two
hidden layer can effectively learn the mapping to complete
LR patch reconstruction with high speed. In addition, benefit
from SIMK-based classification, which is essentially a fea-
ture extraction stage, we can set a small LR patch size so that
m-NN will focus on tiny details and reconstruct them well.

3.3. Decision Scheme for Branching Nodes

As we described above, the purpose of node branching is
to classify samples with similar mapping relationships into
the same child node, thereby guaranteeing the generalization
ability of m-NNs. To ensure the validity of node branch-
ing, we design a validity check to decide whether to perform
branching for each node as shown in Fig. 3. We collect val-
idation set S = {vpi|vpi = (vli, vhi)} from BSD500 [16]
and complete selection of optimal result as follows,

min(
∑

vli∈S1

‖vhi−F1(vli)‖22 +
∑

vlj∈S2

‖vhj−F2(vlj)‖22 ,∑
vlk∈S0

‖vhk−F0(vlk)‖22),

(8)
where vl/vh are the LR/HR patches of father node which are
classified from the validation set, F0(.) denotes the learned
m-NN of father node and F1(.)/F2(.) denote the m-NN of
right/left child nodes. In this process, We use m-NNs of the
father-node and two branched child-nodes to reconstruct LR
patches of the classified samples respectively, then calculate
the squared errors of each layer and confirm whether the
branching of father node is valid.
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Fig. 4. Visual comparison with other methods for ×4 ampli-
fication. (Zoom in for best view)

By iteratively executing the proposed node-branching
process, we obtain the desirable decision tree and m-NN of
each leaf node. In the testing process, patches of LR image
select the path and match leaf nodes through the learned b-
NNs, then generate HR patches by the corresponding m-NNs
and reconstruct the whole image. Finally, to further improve
the quality by global constraint, the HR image is optimized
by equation (4), where the closed-form solution is obtained
similar to the method [17]:

X̂ = F−1
(
F(BTSTY ) + λF(

∑
i (Mili)

T
Qi)

F(BTSTSB) + λF(
∑

iQi
TQi)

)
(9)

F(.) denotes the Fourier transform and Mili can be consid-
ered as i-th gerenated HR patch.

4. EXPERIMENT

In our experiments, we use 728 images as the training set
like [13]. Methods are tested to evaluate the performance of
upscaling factors 2,3 and 4. LR images are created by down-
sizing HR images with bicubic sampling and Gaussian blur.
Both SR methods are only applied to and compared on the
luma channel. We collect LR patches with size 5×5 from the
training set. For different upscaling factor s, the correspond-
ing HR patch size is s× s.

Our method uses BP algorithm to train several b-NNs
and m-NNs based on fully-connected neural networks, where
proper network parameter set can balance performance and
runtime. After experimental analysis, we set 2-layer b-NNs
as {25,15,1} networks and set m-NN as {25,50,15,s2} ones,
which can achieve desired accuracy as well as fast speed. The
proposed method is compared with other SR algorithms for
both objective and visual quality assessments. Table 1 shows
the numerical results, where ‘our-s’ denotes the results with-
out global constraint. It shows our method achieves the best
results with the highest PSNR and SSIM values. Fig. 4 shows
the comparison of the visual quality on upscaling factor 4.
Comparing with others which successfully reconstruct clearer

Table 1. The comparison of PSNR(dB) and SSIM (add noise)

×2 ×3 ×4 ×2 ×3 ×4
bicubic 33.05/0.899 29.65/0.812 28.32/0.754 29.75/0.822 26.90/0.709 25.49/0.623
ScSR[6] 34.89/0.921 31.21/0.848 28.61/0.765 30.79/0.849 27.64/0.729 25.64/0.635
ANR[7] 35.29/0.912 31.49/0.851 29.22/0.793 31.45/0.861 28.26/0.753 26.24/0.647
A+[11] 35.89/0.914 32.18/0.862 29.84/0.797 31.89/0.863 28.72/0.759 26.67/0.658
SISR[12] 34.69/0.923 ~ ~ 30.89/0.859 28.17/0.746 26.08/0.651
SRCNN[8] 35.98/0.931 32.33/0.872 30.05/0.799 31.96/0.868 28.90/0.765 26.70/0.667
FSRCNN[18] 36.03/0.934 32.32/0.875 30.07/0.803 31.98/0.867 28.91/0.764 26.69/0.665

our-s 36.33/0.941 32.45/0.873 30.26/0.811 32.23/0.877 29.07/0.771 26.95/0.675
our 36.41/0.942 32.47/0.873 30.33/0.815 32.29/0.877 29.15/0.773 27.06/0.677

Set5 Set14

Table 2. Compare costs and runtimes with state-of-the-art
deep learning and non-deep learning methods (without noise)

SRCNN[8] FSRCNN[18] VDSR[19]   lapSCN[20] 
ECCV14  CVPR16    CVPR16   CVPR17 

MMPM[22]   WSD-SR[23]   SWL-SR[24]

TIP18            TIP18  TIP18

Parameters 60K 40K 665K 813K ~ ~ ~ 5K

Operations 75G 8G 612.6G 29.9G ~ ~ ~ 0.6G

CPU 1.8s 0.6s 7.9s 1.7s 5.5s 9.8s 96s 0.08s

GPU 0.13s 0.06s 0.1s 0.09s ~ ~ ~ 0.003s

Set14 ×2 32.42 32.63 33.05 33.08 32.82 32.83 32.56 32.69
B100  ×4 26.91 26.95 27.29 27.32 26.85 ~ 27.06 26.98

Deep learning SR methods Non-deep learning SR methods

Costs(The operations is computed for the situation that ×4 upsampling for 720p HR images)

Average runtime(×4 upsampling for 256×256 HR images)

Average PSNR(dB)

our

textures and smoother edge lines but exist over-sharpen ef-
fects, our method better reconstructs the local noise and edge
aliasing that usually exist in the texture region, making the
visual closer to the natural image.

In terms of cost and runtime, compared to deep learning
SR methods that require multi-layer or even multi-channel
networks, our method only uses several 1-or 2-hidden-layer
BP networks to complete LR patch classification and up-
sampling, which can achieve 0.08s per 256×256 image for
×4 upsampling even on normal CPUs (matlab environment).
Our method also guarantees the performance attribute to the
proper classification scheme and the strong generalization
ability of m-NNs. Table 2 shows the comparison with the
state-of-the-art methods [8, 18, 19, 20, 21], we quantify the
computation costs by the number of parameters and opera-
tions, and record the runtimes on GPUs and CPUs. It shows a
significant advantage for our method on costs and speed. Be-
sides, our average PSNR outperform other non-deep learning
methods [22, 23, 24] and is closer to deep learning ones.

5. CONCLUSION

In this paper, we propose a real-time and efficient SR method
which combines a sample classification tree based on SIMK
and a mapping-learning stage based on nonlinear regression,
which simultaneously guarantees both reconstruction qual-
ity and speed at the stage of classification and mapping-
learning. Comparing with state-of-the-art methods, our
method achieves both visual and performance improvement.
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