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ABSTRACT

We propose a method for the accurate and robust reconstruction of
the non-bandlimited finite rate of innovation signals on the sphere.
For signals consisting of a finite number of Dirac functions on the
sphere, we develop an annihilating filter based method for the ac-
curate recovery of parameters of the Dirac functions using a finite
number of observations of the bandlimited signal. In comparison
to existing techniques, the proposed method enables more accurate
reconstruction primarily due to the better conditioning of systems
involved in the recovery of parameters. In order to reconstruct K
Diracs on the sphere, the proposed method requires samples of the
signal bandlimited in the spherical harmonic (SH) domain at SH de-

gree equal or greater than K +
√

K + 1
4
− 1

2
. In comparison to

the existing state-of-the-art technique, the required bandlimit, and
consequently the number of samples, of the proposed method is (ap-
proximately) the same. We also conduct numerical experiments to
demonstrate that the proposed technique is more accurate than the
existing methods by a factor of 107 or more for 2 ≤ K ≤ 20.

Index Terms— Unit sphere, sampling, finite rate of innovation,
signal reconstruction, spherical harmonic transform

1. INTRODUCTION

Spherical signal processing techniques finds direct applications in
diverse fields of science and engineering where signals are natu-
rally defined on the sphere. Applications of these techniques in-
clude, but not limited to, spherical harmonic lighting in computer
graphics [1], signal analysis in diffusion magnetic resonance imag-
ing (dMRI) [2, 3], spectrum estimation in geophysics and cosmol-
ogy [4], sound analysis and reproduction in acoustics [5] and place-
ment of antennas in wireless communication [6]. To support sig-
nal analysis in these applications, accurate reconstruction of signals
from a finite number of measurements is inherently required and is
therefore of significant importance. In this paper, we consider the
problem of sampling and accurate reconstruction of non-bandlimited
finite rate of innovation (FRI) signal, consisting of finite K number
of Dirac delta functions, on the sphere.

Many sampling schemes have been proposed in the litera-
ture (e.g., see [7] and references therein) for the acquisition of
signals bandlimited in the spectral domain, which is enabled by the
spherical harmonic (SH) transform – a natural counterpart of the
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Fourier transform for signals on the sphere [8]. For the accurate
computation of SH transform and accurate reconstruction of a sig-
nal bandlimited at SH degree L (formally defined in Section 2.1),
we require L2 number of samples [7]. The sampling schemes for
taking measurements of bandlimited signals, although permit ac-
curate reconstruction of signal, are not suitable for sampling of
non-bandlimited signals like an ensemble of spikes (Dirac delta
functions in the limit) on the sphere which appear in applications in
dMRI [3], acoustics and cosmology [9].

Based on the super-resolution theory [10], an algorithm has been
developed in [11] for the reconstruction of FRI signals using semi-
definite programming, root finding and least-squares. However, the
method is iterative in nature and requires Dirac functions to satisfy
a minimum separation condition. Recently, following the annihilat-
ing filter method devised for signals in one-dimensional Euclidean
domain [12] and extended to 2D and higher dimensions [13], sig-
nal processing techniques have been proposed in [9, 14, 15] for the
recovery of parameters of FRI signal on the sphere. The method
proposed in [14] requires bandlimiting the FRI signal at L = 2K
for the reconstruction of K Diracs. To reduce the total number of
measurements, an alternative reconstruction technique has been de-
veloped in [9] which requires the measurements of the FRI signal
bandlimited at L ≥ (K +

√
K) and therefore reduces the number

of samples requirement by a factor of approximately four. For both
of these methods, the error in the recovery of parameters increases
with the number of Diracs due to ill-conditioning of the systems.

In this work, we also employ the annihilating filter method in
order to develop a method for the accurate reconstruction of an FRI
signal composed of K Diracs on the sphere. Our method bandlimits

the signal at L ≥ (K+
√

K + 1
4
− 1

2
) or L ≥ (K+

√
K + 5

4
+ 1

2
)

and therefore takes (approximately) the same 1 number of samples
compared to the best of existing methods. More importantly, in com-
parison to existing techniques, our method enables more accurate
recovery of parameters of FRI signals as we demonstrate through
numerical experiments. Before we present our proposed method in
Section III and carry out its analysis in Section IV, we present the
mathematical background and review of the existing methods for the
problem under consideration.

1Since bandlimit L is required to be an integer, the difference between
the bandlimit required by the best of existing algorithms and the proposed
method is zero or differs by one.
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2. PRELIMINARIES AND PROBLEM FORMULATION
2.1. Mathematical Preliminaries – Signals on the Sphere
The 2-sphere or unit sphere is defined as S2 = {û ∈ R

3 : |û|2 =
1}, where we denote by | · |2 the Euclidean norm and by û a unit

vector in R
3, parameterized in terms of θ and φ as û ≡ û(θ, φ) �

(sin θ cosφ, sin θ sinφ, cos θ)T. Here θ ∈ [0, π] is the colatitude
angle, φ ∈ [0, 2π) is the longitude angle and (·)T denotes the trans-
pose operator. The inner product between two functions (or signals)
g and h on the sphere is defined as

〈g, h〉 �
∫
S2

g(û)h(û) ds(û), (1)

where ds(û) = sin θ dθ dφ is the differential area element on S
2, (·)

denotes the complex conjugate and the integration is carried out over
the entire sphere. The complex-valued functions on the 2-sphere
form a Hilbert space L2(S2) equipped with the inner product defined
in (1).

For the space L2(S2), spherical harmonic functions (or spheri-
cal harmonics for short), denoted by Y m

� (û) ≡ Y m
� (θ, φ) for integer

degree � ≥ 0 and integer order |m| ≤ �, serve as complete orthonor-
mal basis [8]. Due to completeness of spherical harmonics, we can
represent any signal f ∈ L2(S2) as

f(û) =

∞∑
�=0

�∑
m=−�

(f)m� Y m
� (û), (2)

where (f)m� � 〈f, Y m
� 〉 [8] denotes the spherical harmonic coeffi-

cient of integer degree � ≥ 0 and integer order |m| ≤ �. The spheri-
cal harmonic coefficients form the representation of a signal in spec-
tral (Fourier) domain. We define the function f to be bandlimited in
spectral domain at degree L if (f)m� = 0, ∀ � ≥ L, −� ≤ m ≤ �.

2.2. Problem Formulation
We consider an ensamble of K Diracs on the sphere given by

f(û) =
K∑

k=1

αk δ(û, ûk), (3)

where ûk ≡ ûk(θk, φk) represents the location of k-th Dirac on
the 2-sphere and αk is the complex amplitude. Here δ(û, ûk) is the
Dirac delta function defined on the sphere which, similar to its lin-
ear counterpart, is identified by its sifting property 〈f, δ(· , ûk)〉 =
f(ûk). We want to accurately recover the amplitudes αk and loca-
tions ûk of K Diracs of f , given the samples of f bandlimited in the
spectral domain.

2.3. Review of Existing Methods
For the recovery of parameters of signal of the form given in (3),
an algorithm has been recently presented in [14], based on the an-
nihilation filter method [12], for the recovery of the parameters of
f which requires the computation of SH coefficients (f)m� of f for
degrees � < 2K and orders |m| ≤ �, which are computed by first
convolving the signal f with a sampling kernel which bandlimits
the signal at degree L = 2K. If the recently proposed optimal-
dimensionality sampling [7] is employed for the computation of SH
coefficients, the method requires L2 samples of the signal f ban-
dlimited at L = 2K. Employing the SH coefficients, the method
then forms a Toeplitz system which enables the computation of φk

using which αk and θk are recovered. The method assumes that

θk /∈ {0, π} and θj 
= π− θk when φj = φk for j, k = 1, 2, . . . ,K
and j 
= k.

To reduce the number of samples required for the recovery of
parameters, an algorithm has been presented more recently in [9],
which requires spherical harmonic coefficients (f)m� for � < L
and orders |m| ≤ � of the signal f bandlimited at SH degree2

L = �K +
√
K�. Consequently, when compared to the method in

[14], this method requires (approximately) four times less number
of samples. The SH coefficients are then used to form an annihilat-
ing matrix [12] which enables the computation of θk, which are then
used to recover the parameters αk and φk. The algorithm works only
when θk /∈ {0, π} and θj 
= θk for j 
= k and j, k = 1, 2, . . . ,K.
Although both of these methods allow recovery of parameters, the
reconstruction error increases when the number of Diracs on the
sphere increase as we illustrate later in the paper.

3. ACCURATE RECONSTRUCTION OF FRI SIGNALS
3.1. Formulation
By utilizing the sifting property of Dirac delta functions, we can
express the spherical harmonic coefficient (f)m� = 〈f, Y m

� 〉
of f given in (3) as (f)m� =

K∑
k=1

αk Y m
� (θk, φk). Note that

Y m
� (θ, φ) = Y m

� (θ, 0) eimφ and Y m
� (θ, 0) can be obtained by mul-

tiplying (sin θ)|m| with a polynomial in cos θ of degree (�−|m|) [8].
Therefore, denoting the coefficients of the polynomial in cos θ by
cp�m (corresponding to (cos θk)

p), the SH coefficient (f)m� can be
expressed as

(f)m� =

K∑
k=1

αk

�−|m|∑
p=0

cp�m (cos θk)
p(sin θk)

|m|e−imφk , (4)

For a fixed order m, rearranging (4) yields

(f)m� =

�−|m|∑
p=0

cp�mdpm, (5)

where

dpm =

⎧⎪⎪⎨
⎪⎪⎩

K∑
k=1

(αkykp)x
m
k 0 ≤ m < L,

K∑
k=1

(αkykp)x
−m
k −L < m < 0,

(6)

with xk = sin θke
−iφk and ykp = (cos θk)

p. Clearly, both dpm
for 0 ≤ m < L and dpm for −L < m < 0 are linear combina-
tion of exponentials xm

k and therefore are of special interest as the
annihilating filter technique [12] can be used to recover xk.

3.2. Annihilating Matrix Formulation

We consider that the measurements of the signal f bandlimited at
degree L are available such that the spherical harmonic coefficients
(f)m� can be accurately computed for all degrees � < L and all
orders |m| ≤ �. We shortly present the bandlimit L required for the
accurate reconstruction of f .

In (5), (f)m� for |m| ≤ � < L and dpm for 0 ≤ p < L − |m|
form a linear system of equations for each |m| < L with triangular
coefficient matrix of size (L−|m|)×(L−|m|). Consequently, dpm
for 0 ≤ p < L − |m| can be recovered exactly for each |m| < L
using (5).

2Here �·� denotes the integer ceiling function.
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Once dpm is computed, we employ the annihilating filter tech-
nique [12] to estimate xk as dpm is a linear combination of K powers
of xk. This technique is based on the construction of an annihilating
matrix Z as follows

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0,L−1 d0,L−2 · · · d0,L−K−1

d0,L−2 d0,L−3 · · · d0,L−K−2

...
...

. . .
...

d0,K d0,K−1 · · · d0,0
d0,−(L−1) d0,−(L−2) · · · d0,−(L−K−1)

d0,−(L−2) d0,−(L−3) · · · d0,−(L−K−2)

...
...

. . .
...

d0,−(K) d0,−(K−1) · · · d0,0
d1,L−2 d1,L−3 · · · d1,L−K−2

d1,L−3 d1,L−4 · · · d1,L−K−3

...
...

. . .
...

d1,K d1,K−1 · · · d1,0
d1,−(L−2) d1,−(L−3) · · · d1,−(L−K−2)

d1,−(L−3) d1,−(L−4) · · · d1,−(L−K−3)

...
...

. . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

and then computing its right singular vector v.

Lemma 1. Let f be a signal as defined in (3). Assuming that αk ∈
C such that angle3 ∠αi 
= ∠αj for at least one (i, j) for i, j =
1, 2, . . . ,K, i 
= j, if the longitudes and colatitudes of K Diracs of
f are such that θj 
= π − θk when φj = φk for j, k = 1, 2, . . . ,K,
j 
= k, then the null-space N (Z) of the annihilating matrix Z with
at least K rows is 1-dimensional.

3.3. Recovery of Longitudes of Diracs
Now we employ the annihilating filter property to estimate xk us-
ing v ∈ N (Z). A finite impulse response (FIR) filter is known as
annihilating filter if zeros of the filter are placed such that the filter
annihilates the signal. Since v ∈ N (Z), we have dT

qv = 0 for

any dq � Z{q, :}, that is, the q-th row of the annihilating matrix
Z. Consequently, v is a vector of coefficients of the FIR filter which
annihilates the signal of the form (6). The transfer function of such
annihilating filter is given by

V (z) �
K∏

k=1

(1− xkz
−1) �

K∑
n=0

vnz
−n. (8)

Since we have determined v, we obtain the estimate of xk for 1 ≤
k ≤ K by finding the K roots, denoted by x̃k for 1 ≤ k ≤ K, of
the annihilating filter. Using x̃k and noting that xk = sin θke

−iφk ,
we recover the longitudes φk from x̃k as

φ̃k = −∠x̃k. (9)

3.4. Bandlimit Requirement
For a signal f bandlimited at L, the maximum number of rows of Z
which can be constructed is 2× (L−K)+2× (L−K−1)+ · · ·+
2× 2 + 2× 1. Following Lemma 1, we require matrix Z to have at

3∠(·) denotes the phase of the complex argument.

least K rows to ensure a unique vector v ∈ N (Z). Consequently,
we require

L ≥ K +

√
K +

1

4
− 1

2
. (10)

However, if αk ∈ R / αk ∈ C : ∠αi = ∠αj for all i, j =
1, 2, . . . ,K then N (Z) in more than 1-dimensional. To reconstruct
such a signal, we add a complex Dirac, with known location, to f to
obtain a modified signal g consisting of K + 1 Diracs such that

(g)m� = (f)m� + αK+1Y m
� (θK+1, φK+1), (11)

here we assume that ∠αK+1 
= ∠αi for i = 1, 2, . . . ,K. We then
reconstruct the annihilating matrix Z for the reconstruction of pa-
rameters of K + 1 Diracs using (11), (6) and (7) which, according
to Lemma 1, results in a 1-dimensional N (Z). Since the signal to
be reconstructed now consists of K + 1 Diracs, we need more num-
ber of samples of f to compute (f)m� upto a greater bandlimit. The
exact bandlimit requirement is therefore given by

L ≥
⎧⎨
⎩

K +
√

K + 1
4
− 1

2
case 1,

K +
√

K + 5
4
+ 1

2
case 2,

(12)

here case 1 refers to αk ∈ C : ∠αi 
= ∠αj for at least one (i, j),
i, j = 1, 2, . . . ,K and i 
= j while case 2 refers to αk ∈ R / αk ∈
C : ∠αi = ∠αj for all i, j = 1, 2, . . . ,K. In the remaining sec-
tions, we define our algorithm for the reconstruction of f assuming
that f satisfies Lemma 1. The extension of the algorithm to recon-
struct the modified signal with K + 1 Diracs is straightforward.

3.5. Recovery of Colatitudes and Amplitudes of Diracs
Here we use the estimated x̃k to recover colatitude θk and ampli-
tude αk for k = 1, . . . ,K. For p = 0, we have dpm for m =
0, 1, . . . , L− 1, which we explicitly rewrite, using (6), as

d0m =

K∑
k=1

αkx
m
k . (13)

Since we have chosen L > K, we can form the following Vander-
monde system using (6):⎡

⎢⎢⎢⎣
1 1 · · · 1
x1 x2 · · · xk

...
...

. . .
...

xK−1
1 xK−1

2 · · · xK−1
k

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
α1

α2

...
αK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d00
d01

...
d0K−1

⎤
⎥⎥⎥⎦ . (14)

Provided xk, k = 1, 2, . . . ,K, are distinct as ensured by Lemma
1, the Vandermonde system above enables recovery of amplitudes
α̃k, k = 1, 2, . . . ,K.

To recover colatitude parameter, we use dpm for p = 1 and
m = 0, 1, . . . , L − 2. Using d1m, given in (6), and noting that
yk1 = cos θk, we formulate another Vandermonde system given by⎡
⎢⎢⎢⎣

1 1 · · · 1
x1 x2 · · · xk

...
...

. . .
...

xK−1
1 xK−1

2 · · · xK−1
k

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

α1 cos θ1
α2 cos θ2

...
αK cos θK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d10
d11

...
d1K−1

⎤
⎥⎥⎥⎦ .

The solution to above system yields an estimate of αk cos θk, de-
noted by est{αk cos θk}, for k = 1, 2, . . . ,K. Since we have al-
ready recovered amplitude as α̃k, we recover the colatitude as

θ̃k = arccos

[
est{αk cos θk}

α̃k

]
, k = 1, 2, . . . ,K. (15)

1729



0 5 10 15 20
1e−30

1e−25

1e−20

1e−15

1e−10

1e−05

1

1e05

Number of Diracs, K

E θ, E
φ o

r E
α

E
θ

E
φ

E
α

Using [14]
Using [6]
Proposed

Fig. 1: Mean Error Eα, Eφ and Eθ between recovered and origi-
nal amplitudes, longitudes and colatitudes respectively for different
values of 2 ≤ K ≤ 20 (number of Diracs).

4. ANALYSIS

4.1. Bandlimit Requirement Analysis

As mentioned earlier, we require L2 number of measurements of
the signal bandlimited at L to compute its spherical harmonic coef-
ficients. Consequently, it is desirable for a method to have smaller
bandlimit requirements to reduce the number of measurements. For
the recovery of parameters of the signal consisting of K Diracs on
the sphere, the bandlimit required by the proposed algorithm is ei-

ther L = �K +
√

K + 1
4
− 1

2
� or L = �K +

√
K + 5

4
+ 1

2
�,

which is much smaller as compared to L = 2K required by the
method in [14] and the same (or 1 less or 1 more respectively) than
L = �K +

√
K� required for the algorithm presented in [9].

4.2. Accuracy Analysis

In order to compare the recovery/reconstruction error of the pro-
posed method with the algorithms presented in [14] and [9], we im-
plement each method in MATLAB and recover the parameters of the
signal f given by (3), by conducting following experiment. For each
K = 2, 4, . . . , 20, we randomly choose the parameters4 θk ∈ (0, π),
φk ∈ [0, 2π) and αk with real and imaginary parts taken from a uni-
form distribution in the interval [−1, 1] for k = 1, 2, . . . ,K. For

each method and each K, we recover the parameters θ̃k, φ̃k and α̃k

of the signal and compute the mean-squared errors given by Eθ =

1
K

K∑
k=1

|θ̃k−θk|2, Eφ = 1
K

K∑
k=1

|φ̃k−φk|2, Eα = 1
K

K∑
k=1

|α̃k−αk|2.

We plot these errors, averaged over 1000 trials of the experiment, in
Fig. 1, where it is evident that the proposed method enables more
accurate recovery of parameters when compared to other methods in
literature. On average, the proposed algorithm outperforms the other
methods in terms of smaller recovery error by a factor up to 107.

4The parameters are randomly generated such that we have K distinct θk
and xk = sin θke

−iφk as the method in [9] requires θk, k = 1, 2, . . . ,K
to be unique, whereas the method in [14] and our proposed method require
xk, k = 1, 2, . . . ,K to be unique (Lemma 1). This is avoided by imposing
a condition that the K Diracs have at least π

3K
angular distance among them.

0 0.002 0.004 0.006 0.008 0.01
1e−30

1e−28

1e−26

1e−24

1e−22

1e−20

1e−18

1e−16

|cosθ2− cosθ1|

E θ

|φ2− φ1| = pi/300

|φ2− φ1| = pi/25

|φ2− φ1| = pi/10

Using [6]

Proposed

Fig. 2: Mean Error Eθ between recovered and original colatitudes
for K = 2 at different locations of the two Diracs on the sphere.

4.3. Better Conditioning of Our System

In this section we see why the proposed method is more accurate
than [9, 14] by analyzing the relation between the reconstruction
error and the minimum distance among the roots xk of the annihi-
lating filter. We consider a complex signal consisting of two Diracs
on the Sphere. The first Dirac is located arbitrarily at û1(θ1, φ1) =
û1(π/2, π/6). We consider three different values of φ2, such that
|φ2−φ1| = { π

10
, π

25
, π

300
}. For each value of φ2, θ2 is choosen such

that | cos θ2 − cos θ1| varies from 1× 10−2 to 1× 10−4 in steps of
5 × 10−4. For each case, we recover the colatitudes {θ1, θ2} using
[9] and the proposed algorithm separately. In [9], xk = cos θk
is real and 1-dimensional. Therefore, we see from Fig. 2 that as
| cos θ2 − cos θ1| = |x2 − x1| is reduced, the reconstruction er-
ror is increased significantly irrespective of the value of φ2. How-
ever, in the proposed algorithm, xk = sin θke

−iφk is complex and
2-dimensional. Therefore, as we reduce | cos θ2 − cos θ1|, the re-
construction error is not increased because |x2 − x1| does not only
depend on | cos θ2−cos θ1|. Rather the reconstruction error depends
on |φ2 − φ1| as well and we can get smaller reconstruction error by
increasing |φ2 − φ1| as well. For each synthetic signal, we repeated
the reconstruction 1000 times using [9] and the proposed algorithm
to compute the average reconstruction error Eθ plotted in Fig. 2.
The proposed method is also more accurate than [14]. Although
both [14] and the proposed method have 2-dimensional roots xk of
the annihilating filter, our proposed method uses dpm for all possible
values of p to construct the annihilating matrix while [14] uses only
p = 0 to construct the annihilating matrix.

5. CONCLUSIONS

In this work, we have proposed a method for accurate reconstruc-
tion of an FRI signal consisting of K Dirac functions on the sphere.
The proposed method takes samples of the signal bandlimited in

the SH domain at the SH degree L = �K +
√

K + 1
4
− 1

2
� or

L = �K+
√

K + 5
4
+ 1

2
� for the computation of SH transform of the

signal f . Following the computation of SH coefficients, we recover
the parameters of the Diracs using the annihilating filter method, root
finding and solving a series of linear systems. The proposed method
requires (approximately) the same number of samples compared to
the best of existing methods. More importantly, the error in the re-
covery of parameters is significantly smaller.
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