
SINGLE IMAGE INTERPOLATION EXPLOITING SEMI-LOCAL SIMILARITY

Lantao Yu, Michael T. Orchard

Rice University

Department of Electrical and Computer Engineering

Houston, TX, 77005, USA

ABSTRACT

This paper explores the modeling and exploitation of

semi-local similarity in natural images to address the ill-

posed nature of image interpolation. Our approach distin-

guishes itself from prior approaches by direct and careful

use of semi-local similar patches to interpolate each individ-

ual patch. Our work uses a simple, parallelizable algorithm

without the need to solve complicated optimization prob-

lems. Experimental results demonstrate that our interpolated

images achieve significantly higher objective and subjective

quality compared with those from state-of-the-art algorithms.

Index Terms— image interpolation, semi-local similar-

ity, non-local similarity, image modeling

1. INTRODUCTION

Image interpolation addresses the problem of generating a

high-resolution image from its low-resolution counterpart. In-

terpolation algorithms can be understood as reflecting some

model for the relationship between the high-resolution and

low-resolution images, and the model’s accuracy and gener-

ality often dictate algorithm performance.

Early interpolation algorithms (e.g. bicubic) employed

linear, spatially invariant models that failed to capture the

fast evolving properties of edges and that generated interpo-

lated images with blurry edges, significant artifacts and low

visual quality. Subsequent contributions employed spatially

varying models adaptive to local structures, with improved re-

sults. For example, NEDI [1] modeled orientation-invariance

between the low- and high-resolution covariance structure in

the vicinity of edges to improve interpolation of local ori-

ented structures. Later algorithms [2, 3, 4, 5, 6] refined the

directional modeling of NEDI [1], reflecting various priors

on natural images, with improved performance. SME [7]

used cubic-spline directional interpolators matching the local

orientations to exploit smoothness along edge contour direc-

tions. It achieves similar performance as [2, 3, 4, 5, 6].

Recent image interpolation algorithms [8, 9] have been

based on modeling patches of images as linear combinations

of a sparse dictionary of patches (atoms). Started with an

interpolated image via a simple, spatially-invariant operator

(e.g. cubic spline interpolator), the high-resolution image

is iteratively updated via linearly combining the iteratively

generated atoms based on “similar” patches collected from

throughout the image (non-local similarity). Impressive re-

sults have been demonstrated based on this approach.

This paper adopts a variation of a non-local similarity

model (we refer to it as “semi-local similarity” 1) in natu-

ral images: namely, it is often true that a given patch can be

well approximated by some linear combination of “similar”

patches collected within its neighborhood in the image. For

the case of 2-by-2 interpolation, we consider each patch of

the high-resolution image to comprise 4 subsampling phases,

with one of those phases containing the measured pixel values

from the low-resolution image, and the others representing

missing pixels to be estimated. When applying our semi-local

similarity model to estimate “missing pixel” phases of a given

high-resolution patch, we recognize that some of the “simi-

lar” patches that are linearly combined in the model contain

measured pixel values in positions corresponding to the miss-

ing pixels to be estimated. We define an iterative approach

for updating “missing pixel” phases of patches from informa-

tion drawn from “measured pixel” phases of similar patches,

which converges to a reliable estimate of the high-resolution

image. The approach of [10] takes a similar approach and

achieves high performance.

This paper proposes an iterative algorithm to exploit semi-

local similarity in single image interpolation task. This al-

gorithm progressively updates an interpolated image starting

with a tentatively interpolated image. Within each iteration,

the image is first decomposed into overlapping patches. Then

for each individual patch, multiple similar patches has been

searched whose pixel values are linearly combined to update

“missing pixel” phases of this patch. Each iteration ends up

with synthesizing all the updated patches into an interpolated

image. An interpolated image is generated after a few iter-

ations. Our work is different from [10] in a sense that we

have a careful management of this iterative scheme aiming

at best exploiting semi-local similarity. Our algorithm is not

only simple compared with [8, 9] in a sense, without the need

1Semi-local similarity is usually treated as a practical version of non-local

similarity by specifying searching similar patches within a neighborhood to

reduce the computational cost. People commonly introduce their work as

using “non-local similarity”, while practically use “semi-local similarity”.

1722978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

to address complicated optimization problem, but also paral-

lelizable since updating each patch only depends on its semi-

local patches. This paper presents our algorithm and demon-

strates its effectiveness in the task of interpolating an image

by a factor of 2 and 3, both horizontally and vertically. Exper-

imental results show our algorithm remarkably enhances im-

age quality compared with current state-of-the-art algorithms

in PSNR and SSIM senses.

The paper is organized as follows: Section 2 introduces

the scheme of our interpolation algorithm. Section 3 demon-

strates the experimental results applying our algorithm on

standard test images. Section 4 compares our algorithms with

related work. We conclude the contribution of the paper and

highlight the future research directions in Section 5.

2. INTERPOLATION SCHEME

Without the loss of generality, we assume that the low-

resolution imageIL of size M × N comes from directly

downsampling a high-resolution image IH of size 2M × 2N ,

i.e. IL(p, q) = IH(2p− 1, 2q − 1), 1 ≤ p ≤ M, 1 ≤ q ≤ N .

We wish to find ÎH , so that ÎH is as close to IH as possible.

For notational convenience, we denote the grid contain-

ing measured pixel values as measurement grid, or OO grid

(shown as black solid squares in Figure 1(a)); the grid of coor-

dinates whose vertical and horizontal coordinates are all even

as EE grid; the grid of coordinates whose vertical coordinates

are even while horizontal coordinates are odd as EO grid;

the grid of coordinates whose vertical coordinates are odd

while horizontal coordinates are even as OE grid. For patches

whose upper-left coordinates are at OO, OE, EO, EE grid as

Poo, Poe, Peo, Pee type, respectively. Within each patch,

we label the pixels at odd vertical and odd horizontal coor-

dinates as OO-position-phase pixels, shown as the black solid

squares in Figure 1 (b); the pixels at odd vertical and even hor-

izontal coordinates as OE-position-phase pixels, shown as the

blue solid squares in Figure 1 (b); the pixels at even vertical

and odd horizontal coordinates as EO-position-phase pixels,

shown as the red solid squares in Figure 1 (b); the pixels at

even vertical and even horizontal coordinates as EE-position-

phase pixels, shown as the green solid squares in Figure 1 (b).

This section proposes a scheme that exploits the pixels on

OO grid, i.e. IL, to estimate the pixel values on OE, EO, EE

grids based on semi-local similarity, thereby generating ÎH .

2.1. Basic Idea

Based on semi-local similarity, in IH , each individual patch

has its similar patches within its own semi-local region. (We

treat the patch as Poo type and label it as Pi, with the size of

n × n, where n is even). Pi’s similar patches are likely to

be categorized as Poo, Poe, Peo and Pee type, as opposed to

only as Poo type. Within the pool of similar patches, Poe, Peo

and Pee type of patches will have OE-, EO- and EE-position-

phase pixels, respectively, all at OO grid. We will operate

on these known, ground-truth pixels to update corresponding

position-phase pixels in Pi.

To update each type of position-phase pixels in Pi, we

linearly combine the same type of position-phase pixels in

corresponding type of Pi’s similar patches. An interpolated

image is then updated by synthesizing all updated Pis. It is

worth mentioning that although IH is not available in actual

interpolation process, we treat an intermediately interpolated

image as IH and assume semi-local similarity still holds.

(a) (b) (c)

Fig. 1. An illustration of the filtering scheme for each patch.

Given a patch Pi whose upper-left pixel is at OO grid (sur-

rounded by a black frame), similar patches whose upper-left

pixels at OE, EO, EE grid are found (a). Each of these similar

patches has pixels on OO grid that well approximate corre-

sponding pixels off the OO grid in Pi (b). By replacing these

pixels in Pi with the filtered corresponding measured pixels

in similar patches, an interpolated patch is generated (c).

2.2. Keystones

Our interpolation’s performance is dictated by how to find

Pi’s similar patches and how to compute these patches’

weights. Due to page limitation, we focus on introducing

the keystones of our interpolation scheme in this subsection.

Pi’s non-local similar patches are searched in a square

window centered at Pi’s upper-left pixel coordinate. We

use metrics to quantify the similarity between Pi and any

patch in the search window in the range of [0, 1] and ensure

that the more similar the patch pair, the larger the similarity

value. Given the positions of the identified similar patches,

the weights, i.e. a K× 1 vector ω, are computed by minimiz-

ing the regularized error of approximating K patches to Pi.

To offer a closed-form solution of ω and penalize the weights

of less similar patches, we use Generalized Ridge Regression

[11] to compute ω which takes the form of Equation 1:

ω = argmin
[

(Qω − p)
T
(Qω − p) + λωTSω

]

, (1)

where S is a K × K diagonal matrix whose diagonal ele-

ments are similarity measures; p stores Pi’s pixel values to be

approximated by corresponding similar patches whose pixel

values stored in Q; both the size of p and Q may vary by

stages of the scheme; λ controls the regularization strength.

Note that the correctness of the coordinates of similar

patches plays a crucial role in ÎH ’s quality, since it deter-

mines the rough structures of ÎH such as the orientation of

1723

edges. Unfortunately, the starting tentative image in the first

iteration often misleads the identification of similar patches.

When a bicubic-interpolated or lanczos-interpolated image

from IL, we call I0H , is treated as the starting tentative im-

age, shown as Figure 2 (a), due to the strong aliasing around

edges, the choice of a near-edge patch’s similar patches are

often not reflecting the local structures (shown as Figure 2

(a)), which in turn lead to artifacts in ÎH , a typical example

of which can be found in Figure 3 (h). To more reliably find

similar patches, we remove aliasing in IL using a low-pass

filter to ensure local structures are identifiable in filtered IL.

A high-resolution image I
lp
H is then bicubic-interpolated from

filtered IL to find similar patches in the first iteration. The

similar patches identified from I
lp

H form consistent orientation

with those identified from the ground-truth image, shown in

Figure 2 (b) and (c).
EE

(a)

EE

(b)

EE

(c)

Fig. 2. An illustration of how aliasing influences the choice

of similar patches and how low-pass filtering addresses this

problem. Given Pi, shown as the red block, top-8 Pee-type

similar patches shown as the green blocks are searched near

Pi by operating on I0H (a), I
lp
H (b), and IH (c), respectively.

It is also worth noticing that in the aforementioned

scheme, the pixels off OO grid are not treated as the bases

to approximate Pi due to their limited correctness. However,

after a few iterations, these pixels are so close to ground-truth

that they are eligible of updatingPi. We thus use all the pixels

in Pi and Pi’s similar patches to update Pi via Equation 1.

STAGE 1: Preprocess IL to obtain a less-aliased tenta-

tively image to find reliable filter supports and weights.

STAGE 2 and STAGE 3: Exploit pixels at OO grid. The

major difference between STAGE 2 and STAGE 3 is that

STAGE 2 computes the filter weights by approximating only

the measured pixels in Pi, while STAGE 3 computes them by

approximating all the pixels in Pi.

STAGE 4: Exploit the pixels both on and off OO grid. The

difference between STAGE 1–3 and STAGE 4 is that when

updating Pi, STAGE 4 computes and apply weights to all the

pixels on the grid rather than the pixels only at OO grid.

3. EXPERIMENTS AND RESULTS

Our algorithm operates on 23 common test images, some

of which can be found in the USC-SIPI image database and

the Berkeley Segmentation Database2, via interpolating the

downsampled-by-2 versions of them by a factor of 2(X2), and

the downsampled-by-3 version of them by a factor of 3(X3),

2For color images, only luminance channel will our algorithm be applied.

both horizontally and vertically. The parameters involved are

appropriately chosen. We compare our X2 results with the re-

sults from [1, 7, 2, 3, 6, 8, 9, 10] 3 and our X3 results with the

results from [8, 9, 10] in Table 1 and Figure 3. PSNR(Peak

Signal-to-Noise Ratio) and SSIM (Structural Similarity [12])

are utilized as image quality metrics.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3. The zoom-in comparison of interpolated edges (X2)

in Motorbike from different methods with the ground-truth.

(a):[1], (b):[7], (c):[2], (d):[3], (e):[6], (f):[8], (g):[9], (h):[10],

(i):Ours, (j): Ground-Truth.

Table 1 demonstrates that in X2 scenario, our algorithm

achieves the highest PSNR in 21 out of 23 images and the

highest SSIM [12] in 20 out of 23 images. Our results

have both the highest average PSNR and the highest average

SSIM which are 0.32 dB/0.0040 better than ANSM [9], 0.33
dB/0.0038 better than NLPC [10] and 0.44 dB/0.0051 better

than NARM [8]; in X3 scenario, our algorithm achieves the

highest PSNR in 22 out of 23 images and the highest SSIM

[12] in 18 out of 23 images. Our results have both the highest

average PSNR and the highest average SSIM which are 0.32
dB/0.0069 better than ANSM [9], 0.22 dB/0.0047 better than

NLPC [10] and 0.57 dB/0.0128 better than NARM [8].

Our algorithm also interpolates images with high visual

quality as illustrated in Figure 3. We can tell that our al-

gorithm clearly reconstructs all the edges along upper-left to

bottom-right direction, preserving both smoothness along the

contour direction and sharpness across the profile direction,

without any noticeable artifacts.

Table 2. Computational Cost Comparison (in seconds) be-

tween Ours and [8, 9] in a Scenario of Interpolating a 128 ×
128 Image to a 256× 256 Image.

ALGORITHM & COMPUTING PLATFORM SECONDS

[8] (MATLAB, NON-PARALLEL) 55.5

[9] (MATLAB, C/C++ MEX) 1265.0

Ours (MATLAB, NON-PARALLEL) 155.6

Ours (MATLAB, PARALLEL) 13.3

Ours (C++, PARALLEL) 3.6

We test different algorithms’ runtimes of interpolating a

128× 128 image to a 256× 256 image on a 2.6G Hz 18-Core

3We thank Professor Shuyuan Zhu at UESTC for providing the results

of his algorithm [6], thank Professor Xianming Liu at Harbin Institute of

Technology for providing the Matlab source code of his algorithm [3].

1724

Table 1. Comparison of PSNRs (in decibels)/SSIMs of the interpolated images between Ours and [1, 7, 2, 3, 6, 8, 9, 10].
[1] (X2) [7] (X2) [2] (X2) [3] (X2) [6] (X2) [8] (X2) [9] (X2) [10] (X2) Ours (X2) [8] (X3) [9] (X3) [10] (X3) Ours (X3)

Elk 31.47/0.9221 31.49/0.9253 31.85/0.9287 31.53/0.9270 31.72/0.9283 31.95/0.9296 32.51/0.9326 32.31/0.9293 32.72/0.9314 27.68/0.8477 27.99/0.8569 28.11/0.8551 28.48/0.8578

Birds 33.67/0.9493 34.28/0.9501 34.63/0.9504 34.43/0.9527 34.52/0.9523 35.03/0.9538 34.67/0.9525 35.00/0.9542 35.12/0.9551 30.01/0.9140 30.40/0.9167 30.51/0.9177 30.47/0.9192

Butterfly 26.11/0.9222 26.75/0.9287 26.94/0.9377 27.28/0.9399 27.88/0.9436 28.23/0.9475 27.90/0.9444 27.86/0.9441 28.49/0.9497 23.46/0.8795 23.54/0.8740 23.54/0.8746 24.03/0.8880

Flower 33.21/0.9452 33.75/0.9514 34.09/0.9543 33.88/0.9517 33.67/0.9515 34.41/0.9567 34.13/0.9553 34.22/0.9547 34.61/0.9577 30.12/0.8987 30.25/0.9048 30.19/0.9006 30.40/0.9040

Girl 31.54/0.8620 31.75/0.8689 31.85/0.8685 31.89/0.8686 31.79/0.8682 32.14/0.9567 32.01/0.8717 32.15/0.8721 32.28/0.8729 29.13/0.7817 29.01/0.7829 29.25/0.7866 29.31/0.7844

Hats 32.15/0.9053 32.33/0.9100 32.51/0.9094 32.61/0.9112 32.27/0.9069 32.55/0.9092 32.79/0.9132 32.62/0.9094 33.21/0.9172 29.15/0.8377 29.30/0.8421 29.61/0.8459 29.68/0.8466

Leaves 26.88/0.9397 27.97/0.9489 28.23/0.9563 28.02/0.9548 28.76/0.9606 29.38/0.9652 28.84/0.9593 29.23/0.9626 29.95/0.9685 23.03/0.8733 23.07/0.8719 23.30/0.8718 23.62/0.8842

Male 31.64/0.8781 32.16/0.8851 32.16/0.8858 32.20/0.8864 32.20/0.8870 32.41/0.8903 32.40/0.8888 32.50/0.8929 32.70/0.8950 28.78/0.7937 28.96/0.8059 28.98/0.8031 29.11/0.8039

Motorbike 25.99/0.8622 26.71/0.8840 27.00/0.8906 26.63/0.8786 26.62/0.8854 26.85/0.8898 27.09/0.8912 27.16/0.8912 27.50/0.8979 22.38/0.7302 22.93/0.7454 23.02/0.7427 23.46/0.7523

Boat 29.32/0.8409 29.71/0.8481 29.71/0.8482 29.59/0.8507 29.50/0.8497 29.86/0.8577 30.19/0.8582 30.06/0.8631 30.26/0.8682 26.58/0.7647 26.80/0.7665 26.72/0.7650 26.88/0.7709

Cameraman 25.68/0.8594 26.24/0.8660 25.99/0.8663 25.90/0.8675 25.65/0.8657 26.04/0.8716 26.61/0.8745 26.31/0.8725 26.57/0.8766 22.80/0.7817 23.21/0.7874 23.23/0.7888 23.39/0.7945

Dragonfly 35.96/0.9623 36.27/0.9658 36.25/0.9638 36.36/0.9653 35.90/0.9612 36.99/0.9671 37.15/0.9698 36.91/0.9657 37.31/0.9682 32.92/0.9330 33.44/0.9404 33.15/0.9346 33.75/0.9419

Fence 21.11/0.7557 23.47/0.7788 22.68/0.7669 22.98/0.7719 23.00/0.7727 23.64/0.7883 23.72/0.7894 23.75/0.7927 23.91/0.7977 19.43/0.5974 19.54/0.6059 19.64/0.6198 19.81/0.6173

Fighter 30.19/0.8409 30.68/0.8498 30.33/0.8408 30.39/0.8495 30.22/0.8408 30.67/0.8603 31.27/0.8634 30.80/0.8612 31.49/0.8697 27.43/0.7749 27.62/0.7642 27.83/0.7769 28.24/0.7876

Lena 33.95/0.9143 34.64/0.9184 34.74/0.9184 34.51/0.9195 34.68/0.9204 35.09/0.9242 34.87/0.9218 35.08/0.9237 35.24/0.9253 31.27/0.8705 31.20/0.8708 31.29/0.8717 31.56/0.8755

Peppers 33.26/0.8781 33.37/0.8737 33.45/0.8754 33.73/0.8837 33.53/0.8784 34.07/0.8872 33.83/0.8809 34.14/0.8895 34.25/0.8922 31.37/0.8499 31.28/0.8426 31.47/0.8490 31.66/0.8550

Sail 32.28/0.9178 32.41/0.9200 32.25/0.9182 32.52/0.9220 32.32/0.9156 32.51/0.9245 32.17/0.9272 32.63/0.9273 32.98/0.9305 29.10/0.8622 29.40/0.8646 29.36/0.8729 29.43/0.8750

Plane 30.02/0.9110 30.30/0.9142 30.48/0.9156 30.58/0.9177 30.35/0.9159 30.33/0.9193 31.05/0.9223 30.99/0.9221 31.23/0.9249 26.75/0.8475 27.37/0.8604 27.46/0.8626 27.63/0.8656

Vase 34.51/0.9050 34.43/0.9054 34.66/0.9071 34.81/0.9088 34.45/0.9024 34.89/0.9074 34.92/0.9113 34.93/0.9090 35.23/0.9132 32.24/0.8459 32.09/0.8509 32.35/0.8521 32.46/0.8563

House 32.14/0.8786 33.19/0.8845 32.87/0.8809 32.99/0.8874 32.76/0.8811 33.49/0.8876 34.46/0.8923 33.93/0.8896 34.56/0.8961 29.83/0.8410 30.06/0.8453 30.23/0.8501 30.30/0.8520

Parrot 26.45/0.8930 26.85/0.8963 27.34/0.9010 27.16/0.9012 27.34/0.8999 27.19/0.8998 27.45/0.9011 27.58/0.9015 27.72/0.9020 23.58/0.8232 24.03/0.8318 24.03/0.8282 24.25/0.8323

Texture 20.69/0.8567 21.53/0.8796 21.44/0.8771 21.20/0.8733 21.15/0.8711 21.48/0.8792 22.00/0.8914 21.92/0.8917 22.13/0.8962 16.53/0.6659 17.31/0.7061 17.47/0.7200 17.69/0.7306

Foreman 36.58/0.9515 36.78/0.9530 37.00/0.9551 37.24/0.9550 37.27/0.9549 38.41/0.9562 38.26/0.9575 38.03/0.9541 38.36/0.9552 34.16/0.9154 34.51/0.9283 34.99/0.9251 35.05/0.9275

AVERAGE 30.25/0.8935 30.74/0.9003 30.80/0.9007 30.80/0.9019 30.76/0.9006 31.20/0.9063 31.32/0.9074 31.31/0.9076 31.64/0.9114 27.29/0.8230 27.54/0.8289 27.64/0.8311 27.86/0.8358

Intel i9 processor using MATLAB (R2018b) and C++ (GCC

7.3.0), which are shown in Table 2. Our algorithm’s compu-

tational cost (155.6 s), without Parallel Computing Toolbox

(PCT)’s optimization, is significantly lower than [9] (1265.0
s) and higher than [8] (55.5 s). Optimized by PCT, the runtime

significantly shrinks (13.3 s). Through implementing our al-

gorithm via C++ code supported by Eigen [13] and OpenMP

[14], the runtime further shrinks to 3.6 seconds. In conclu-

sion, our algorithm’s basic computation is simple, while the

number of each basic computation is not small, which jointly

give rise to the overall non-trivial complexity. However, since

our algorithm is paralleriable, our algorithm can be drastically

accelerated optimized by parallel computing.

4. RELATED WORK

Our work and [4, 5, 6, 8, 9, 10] all belong to the type of algo-

rithms that exploit non-local or semi-local similarity. Within

this type, we further categorize our approach and [8, 9, 10] as

patch-based interpolation approaches which involve both a):

the process of computing the weights of semi-local similar

patches to approximate a patch, and b): the process of up-

dating the pixels by averaging the contribution of all relevant

patches. [4, 5, 6] do not belong to this category since they

only satisfy a), but not b). The reason why patch-based algo-

rithms offer more impressive results than [1, 3, 4, 5, 6, 2, 7] is

because of the joint effect of a): patch-based regression is less

likely to run into the risk of over-fitting the data than pixel-

based regression, and b): patch-based algorithms decrease the

approximation error via averaging multiple patches’ contribu-

tion to each pixel when synthesizing patches to an image.

Compared with [8, 9] which are also patch-based ap-

proaches, we do not impose sparsity constraint. This offers

us abundant bases to approximate each individual patch. Our

work is similar to [10] in a way that we are both exploit

semi-local similarity as discussed in Section 1. Specifically,

our STAGE 2 and 3 bear some resemblance to “Interpolation

stage” in [10]. Unfortunately, [10] does not take the ideas

of removing aliasing, penalizing the weights of less similar

patches and the exploitation of the pixels off measurement

grid into consideration.

5. CONCLUSION AND FUTURE WORK

We propose a novel single image interpolation scheme via

modeling and exploiting semi-local similarity. We directly

use a set of semi-local similar patches to interpolate each in-

dividual patch, rooted in a observation that the pixels within

an individual patch locating off the measurement grid often

have their similar pixels found at the measurement grid within

the patch’s semi-local similar patches. Our proposed method

carefully manages such process and remarkably improves

quality as compared to current state-of-the-art methods both

in PSNR sense and in SSIM sense.

Although our algorithm has achieved state-of-the-art per-

formance, there exists a large room to improve it. Current

definition of “similarity” only takes the perspective of two

patches being linearly close. However, “similarity” could also

mean the proximity in nonlinear sense. For example, two

patches of straight edges of the same sharpness but along

distinct orientations are similar yet they have not been ex-

ploited in our scheme. Exploiting such nonlinearity offers

more abundant bases within the search window so that new

similar patches tend to lie within a tighter similarity bound

which leads to a better estimation of each individual patch.

Even though “similarity” is all about linear proximity, our

work needs to be further improved. For example, using a low-

pass filter with a fixed shape to deal with all sorts of local

structures with different extents of aliasing in our scheme is

suboptimal. Also, using the patches with fixed size is not

suitable to exploit semi-local similarity in extremely localized

structures and may also result to over-fitting.

In the future, we will explore a boarder definition of “sim-

ilarity” involving nonlinearity. Also, we will apply adaptive,

low-pass filters to the low-resolution image with the aware-

ness of different extent of aliasing in local area to appro-

priately remove aliasing. Meanwhile, we will use spatially-

varying patch size to further exploit semi-local similarity.

1725

6. REFERENCES

[1] Xin Li and Michael T. Orchard, “New edge-directed

interpolation,” IEEE transactions on image processing,

vol. 10, no. 10, pp. 1521–1527, 2001.

[2] Xiangjun Zhang and Xiaolin Wu, “Image interpola-

tion by adaptive 2-d autoregressive modeling and soft-

decision estimation,” IEEE transactions on image pro-

cessing, vol. 17, no. 6, pp. 887–896, 2008.

[3] Xianming Liu, Debin Zhao, Ruiqin Xiong, Siwei Ma,

Wen Gao, and Huifang Sun, “Image interpolation via

regularized local linear regression,” IEEE Transactions

on Image Processing, vol. 20, no. 12, pp. 3455–3469,

2011.

[4] Kai Guo, Xiaokang Yang, Hongyuan Zha, Weiyao Lin,

and Songyu Yu, “Multiscale semilocal interpolation

with antialiasing,” IEEE Transactions on Image Pro-

cessing, vol. 21, no. 2, pp. 615–625, 2012.

[5] Xianming Liu, Debin Zhao, Jiantao Zhou, Wen Gao,

and Huifang Sun, “Image interpolation via graph-based

bayesian label propagation,” IEEE Transactions on Im-

age Processing, vol. 23, no. 3, pp. 1084–1096, 2014.

[6] Shuyuan Zhu, Bing Zeng, Liaoyuan Zeng, and Mon-

cef Gabbouj, “Image interpolation based on non-local

geometric similarities and directional gradients,” IEEE

Transactions on Multimedia, vol. 18, no. 9, pp. 1707–

1719, 2016.

[7] Stéphane Mallat and Guoshen Yu, “Super-resolution

with sparse mixing estimators,” IEEE transactions on

image processing, vol. 19, no. 11, pp. 2889–2900, 2010.

[8] Weisheng Dong, Lei Zhang, Rastislav Lukac, and

Guangming Shi, “Sparse representation based image

interpolation with nonlocal autoregressive modeling,”

IEEE Transactions on Image Processing, vol. 22, no. 4,

pp. 1382–1394, 2013.

[9] Yaniv Romano, M Protter, and M Elad, “Single image

interpolation via adaptive non-local sparsity-based mod-

eling,” IEEE Transactions on Image Processing, 2014.

[10] Dong Sun, Qingwei Gao, and Yixiang Lu, “Image in-

terpolation via collaging its non-local patches,” Digital

Signal Processing, vol. 49, pp. 33–43, 2016.

[11] Arthur E Hoerl and Robert W Kennard, “Ridge regres-

sion: Biased estimation for nonorthogonal problems,”

Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[12] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and

Eero P. Simoncelli, “Image quality assessment: from

error visibility to structural similarity,” IEEE Transac-

tions on Image Processing, vol. 13, no. 4, pp. 600–612,

2004.

[13] Gaël Guennebaud, Benoı̂t Jacob, et al., “Eigen v3,”

http://eigen.tuxfamily.org, 2010.

[14] OpenMP Architecture Review Board, “OpenMP appli-

cation program interface version 3.0,” May 2008.

1726

		2019-03-18T11:01:08-0500
	Preflight Ticket Signature

