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ABSTRACT
As a 3-order tensor, a multi-spectral image (MSI) has dozens
of spectral bands, which can deliver more faithful represen-
tation for real scenes. However, MSIs are often corrupted
by noise in the sensing process, which deteriorates the per-
formance of higher-level classification and recognition tasks.
In this paper, we propose a novel tensor dictionaries learning
method for MSI denoising, where two shared dictionaries are
learned from MSI groups of similar blocks in the spatial do-
main and the spectral domain, respectively. In addition, we
enforce a low rank structure for the representations of MSI
groups under the learned dictionaries, which captures the la-
tent structure in MSIs. Our experiments demonstrate that the
proposed method achieves the best performance in compari-
son with the state-of-the-art methods.

Index Terms— Multi-spectral image denoising, dictio-
nary learning, low-rank tensor model

1. INTRODUCTION

Signal processing techniques for tensors have attracted grow-
ing interest of researchers in recent years. As a 3-order ten-
sor, an MSI has dozens of spectral bands which range from
infrared and ultra-violet. Compared with RGB images which
only have three spectral bands, MSIs convey more informa-
tion of real scenes. However, an MSI always suffers from
corruption or noise in the sensing process [1]. As a low lev-
el signal processing technique, MSI denoising is the key to
many high-level computer vision tasks, such as segmentation
and classification whose performance highly rely on the qual-
ity of the data.

As a model based approach, dictionary learning (DL) aim-
s to find a set of atoms from some training data, where each
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signal can be represented by a few of these atoms. By using
a learned dictionary of some signal ensemble, noise can be
effectively removed by solving a sparse signal recovery prob-
lem [2, 3]. Various dictionary learning methods have been
proposed in literature [4, 5, 6, 7, 8], where they treat each
signal as a vector.

Tensor dictionary learning, which keeps the multidimen-
sional structure of tensors, has attracted growing interest of
researchers to restore 3D image from noise in the past years.
By using the CANDECOMP/PARAFAC (CP) decomposi-
tion, Duan et al. extend the K-SVD method for tensor data,
where a set of rank-one tensors are learned to represent the
tensor signals [9]. Based on the Tucker model of tensors,
Zubair and Wang propose to learn multiple orthogonal dic-
tionaries along different modes of tensors, where the core
tensor have sparse non-zeros elements [10]. In [11], Ding et
al. consider joint sensing matrix and sparsifying dictionary
optimization for tensor compressive sensing. In [12], Qi et
al. divide an MSI into small 3-order tensor blocks, and learn
overcomplete dictionaries for each mode of the blocks via
a two-phase block-coordinate-relaxation approach including
sparse coding and dictionary updating. These methods are
based on dictionary learning that exploit a sparse model,
while they fails to further employ structural information for
real MSI denoising. In applications of image denoising, in
order to further improve image quality with redundant infor-
mation, non-local similar small patches in space are clustered
into groups, instead of using the whole image [13, 14]. For
example, there exist many similar blocks in space of an M-
SI, which can be grouped into a tensor. In addition, images
of different spectral bands have high correlations, and thus
an MSI may have a low rank along the spectrum mode. To
exploit these structural information, the low-rank model is
exploited in MSI denoising. In [15], Peng et al. propose to
enforce a smaller core tensor of Tucker low-rank approxima-
tion for each tensor group stacked by similar patches of the
MSI. In [16], Xie et al. consider both the low-rank model
and the sparsity model for each tensor that is consisted of a
group of similar blocks of an MSI. Each group are processed
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Fig. 1. The framework for MSI denoising of the proposed
method.

separately without considering inter-group correlations.
Motivated by the observation that different groups of sim-

ilar blocks in the MSI have some degree of correlation. In
this paper, we propose an MSI denoising method that learns
shared dictionaries for all the groups. This method differ-
s with the denoising methods in [15, 16] which train differ-
ent dictionaries for distinct groups. The overcomplete space
dictionary and spectral dictionary are designed that consider
the correlation of different groups among the whole image.
Furthermore, these groups have the low-rank structure under
the learned dictionaries along different modes. As shown in
Fig. 1, full bands blocks of an MSI can be extracted by win-
dow and then similar blocks are clustered into a 3-order tensor
group with three modes corresponding to the spatial domain,
the spectral domain and blocks. All grouped tensors share
the same overcomplete dictionaries in both the spatial mode
and the spectral mode. An effective algorithm based on the
alternating direction method of multipliers(ADMM) [17] is
used to solve the newly proposed dictionary learning frame-
work for multi-spectral image denoising. Experimental re-
sults demonstrate that the new method outperforms the state-
of-the-art for MSI denoising.

2. LOW-RANK TENSOR DICTIONARY LEARNING
FOR MULTI-SPECTRAL IMAGE DENOISING

2.1. Notations

For convenience, the following notations are used. The
order of a tensor is the number of modes. Elements of
an N -order tensor X ∈ RI1×I2×...×IN are denoted by
xi1...in...iN , where in (1 ≤ in ≤ IN ) refers to the nth
mode index. The mode-n vectors of an N -order tensor X
are the In dimensional vectors obtained from X by varying
index in the nth mode while keeping the indices of oth-
er modes fixed. The unfolding matrix of tensor X at the
nth mode is X(n) ∈ RIn×(I1...In−1In+1...IN ), where the
columns are mode-n vectors of X . Conversely, the matrix
can be folded to a tensor at the nth mode by arranging it-
s columns as mode-n vectors of the tensor. The n-mode
product of a tensor X and a matrix U ∈ RJ×In is defined

as Y = X ×n U ∈ RI1×...×In−1×J×In+1×...×IN . The
unfolding matrix of tensor Y at the nth mode can be ex-
pressed as Y(n) = UX(n). The inner product of two tensors
X ,Y ∈ RI1×I2×...×IN is the sum of the products of their
entries, i.e., ⟨X ,Y⟩ =

∑I1
i1=1 ...

∑IN
iN=1 xi1...iN yi1...iN .

The Frobenius norm of a tensor is defined as ∥X∥F =

(
∑I1

i1=1 ...
∑IN

iN=1 x
2
i1...iN

)1/2.

2.2. The Proposed MSI Denoising Framework

For an MSI M ∈ RL×W×H with H bands, we extract S
overlapping blocks Mi ∈ RdL×dW×H by using a sampling
window that traverses the whole image with step lengthes pL
and pW of the two spacial coordinates. Each block Mi is un-
folded in spectrum domain to be a matrix M i

(3) ∈ RH×dLdW ,
which has a spatial mode and a spectral mode. To exploit the
non-local similarity property of images, blocks of the MSI can
be clustered into K groups, where the kth group forms a ten-
sor group denoted as X (k) ∈ RdLdW×H×s(k)

(
∑K

k=1 s
(k) =

S) with the 3rd mode referring to different blocks. For kth
tensor group X (k), the spatial local correlation between ad-
jacent pixels in the 1st mode, the spectral high correlation in
2nd mode and the similarity of similar blocks in the 3rd mode
imply the latent low-rank structure.

The tensor sparse representation (TenSR) model [12]
learns the shared overcomplete dictionaries from all blocks
which contain the information of the whole MSI. However,
the TenSR model, which consider a sparse representation
under the dictionaries, fails to consider the naturally low rank
structure in a tensor group. To consider the prior for one
tensor group and the correlation of all tensor groups, we con-
sider a low-rank representation under the learned dictionaries
rather than a sparse representation. This model is inspired
from the observation that similar blocks in a group have sim-
ilar representation in the 3rd mode and the tensor group have
some degree of correlations in the spatial domain and the
spectral domain. Similar idea of low-rank representation has
been applied for 2D image processing in [18]. For conve-
nience, we define τ as the dictionary redundancy, which is
the ratio of the number of columns to the number of rows
of the dictionary. The proposed low-rank tensor dictionary
learning framework for MSI denoising is given as follows:

min
Da,De{
Z(k)

}
K∑

k=1

(∥∥∥X (k) −Z(k) ×1 D
a ×2 D

e
∥∥∥2

F
+ λ(k)

∥∥∥Z(k)
∥∥∥
∗

)

s.t. ∥Da(:, r)∥22 = 1 for r = 1, . . . , τadLdW

∥De(:, r)∥22 = 1 for r = 1, . . . , τeH,
(1)

where Da ∈ RdLdW×τadLdW and De ∈ RH×τeH are dictio-
naries of the spatial mode and the spectral mode, respectively,
τa and τe determine the redundancy of the two dictionaries,
Z(k) ∈ RτadLdW×τeH×s(k)

is the tensor representation asso-
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ciated with the dictionaries, and λ(k) > 0. By adding up the
nuclear norm of unfolding matrix in each mode, we define
the tensor nuclear norm to measure tensor multilinear rank as
∥X∥∗ =

∑N
n=1 βn

∥∥X(n)

∥∥
∗ and the weights in each mode

satisfy
∑N

n=1 βn = 1, which is validated in [19].

2.3. The Proposed Algorithm Based on ADMM

Solving the optimization problem in (1) is difficult, as the
dictionaries and tensor representations are coupled together.
Here we apply the ADMM [17, 19, 20] that splits the original
problem into several subproblems and update variables iter-
atively. By introducing auxiliary matrices C

(k)
n (n = 1, 2, 3

and k = 1, ...,K), the optimization problem in (1) is equiva-
lently converted into

min
Da,De{

Z(k), C
(k)
n

}
K∑

k=1

(∥∥∥X (k) −Z(k) ×1 D
a ×2 D

e
∥∥∥2

F

+ λ(k)
3∑

n=1

βn

∥∥∥C(k)
n

∥∥∥
∗

)
s.t. ∥Da(:, r)∥22 = 1 for r = 1, . . . , τadLdW

∥De(:, r)∥22 = 1 for r = 1, . . . , τeH

C(k)
n = Z

(k)
(n) for n = 1, 2, 3 and k = 1, . . . ,K.

(2)

The augmented Lagrangian function for the above prob-
lem is given as:

Lρ

(
Da, De, {Z(k)}, {C(k)

n }, {Y (k)
n }

)
=

K∑
k=1

(∥∥∥X (k) −Z(k) ×1 D
a ×2 D

e
∥∥∥2

F
+

3∑
n=1

(
λ(k)βn

∥∥∥C(k)
n

∥∥∥
∗

+ ⟨C(k)
n −Z(k)

(n), Y
(k)
n ⟩+ ρ

2

∥∥∥C(k)
n −Z(k)

(n)

∥∥∥2

F

))
,

(3)

where Y
(k)
n (n = 1, 2, 3 and k = 1, ...,K) are the Lagrange

multipliers, ρ is a positive scalar, and both Da and De must
satisfy column normalization. Now the goal is to minimize
the augmented Lagrange function (3) under the column nor-
malization constraints of dictionaries.

With fixed dictionaries, i.e., Da and De, and Lagrange
multipliers Y (k)

n , the problem in (3) can be split into K sub-
problems which can be conquered in parallel.

For each subproblem, we update C
(k)
n of the kth group

with other variables fixed, which requires to solve the follow-
ing optimization problem

min
C

(k)
n

λ(k)βn

∥∥∥C(k)
n

∥∥∥
∗
+

ρ

2

∥∥∥C(k)
n − T

(k)
n

∥∥∥2

F
, (4)

where T
(k)
n = Z

(k)
(n) − Y

(k)
n /ρ. Define the singular value

decomposition T
(k)
n = UΣV T , and σi is the ith element

of the diagonal matrix Σ. The solution of the optimization
problem in (4) is C

(k)
n = UDκ(Σ)V

T , where Dκ(Σ) =
diag[max{0, σi − κ}] denotes the singular value threshold-
ing operator [21] and κ = λ(k)βn/ρ. To update the tensor
representation Z(k) with other variables fixed, the problem of
minZ(k) Lρ becomes

min
Z(k)

∥∥∥X (k) −Z(k) ×1 D
a ×2 D

e
∥∥∥2

F

+
3∑

n=1

(
⟨C(k)

n −Z(k)

(n), Y
(k)
n ⟩+ ρ

2

∥∥∥C(k)
n −Z(k)

(n)

∥∥∥2

F

)
,

(5)

which also has a close-form solution. The matrix unfolded
form of the solution is

Z
(k)

(3) =

[
2X

(k)

(3) +

3∑
n=1

(
ρC

(k)
n3 +Y

(k)
n3

)] [
2DDT +3ρI

]−1
, (6)

where C
(k)
n3 and Y

(k)
n3 are derived by first folding the matrices

C
(k)
n and Y

(k)
n in the nth (n = 1, 2, 3) mode and then un-

folding them at the 3rd mode, respectively, D = De ⊗ Da

(⊗ denoting Kronecker product), and I is an identity matrix.
The tensor representation Z(k) can be obtained by folding the
matrix solution Zk

(3) in the 3rd mode. For different groups,
we can conduct the above steps in parallel.

Now we consider the updating of Da and De. As the
dictionaries are shared among groups, all blocks of the
multi-spectral image are used in the learning process, i.e.,
min{Da,De} Lρ, which can be rewritten as

min
Da,De

∥X − Z ×1 D
a ×2 D

e∥2F

s.t. ∥Da(:, r)∥22 = 1 for r = 1, . . . , τadLdW

∥De(:, r)∥22 = 1 for r = 1, . . . , τeH,

(7)

where X ∈ RdLdW×H×S is obtained by concatenating all K
tensor groups [X (1), ...,X (K)] and Z ∈ RτadLdW×τeH×S is
acquired in the same way. Then we update each one of Da

and De with the other one fixed in (7). For updating Da, the
optimization problem in (7) becomes

min
Da

∥∥X(1) −DaA(1)

∥∥2
F

s.t. ∥Da(:, r)∥22 = 1 for r = 1, . . . , τadLdW

(8)

where X(1) ∈ RdLdW×HS and A(1) ∈ RτspadLdW×HS are
matrices by unfolding X and A = Z×2D

e respectively. (8) is
a quadratically constrained quadratic programming problem
and can be solved using a Lagrange dual [22]. The update of
De can be conducted in the same manner.

At last, we update the Lagrange multipliers by

Y (k)
n := Y (k)

n + ρ
(
C(k)

n − Z
(k)
(n)

)
, (9)

where we update ρ := µρ (µ > 1) in different iterations to
accelerate convergence. The iterative algorithm stops until
some halting condition is satisfied, and the final denoised MSI
is constructed from Z(k) ×1 D

a ×2 D
e (k = 1, . . . ,K).
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3. EXPERIMENTS

In order to verify the effectiveness of the proposed method for
MSI denoising, we carry out simulated experiments on CAVE
dataset [23], where each MSI has the size of 512 × 512 in s-
pace and includes 31 bands from 400nm to 700nm at 10nm
steps. We compare the proposed method with various exist-
ing approaches including denoising methods for 2D images
(K-SVD [5] and BM3D [13]) and denoising methods for 3D
images (BM4D [14], Tdl [15], and KBRreg [16]). For K-SVD
and BM3D, an MSI is processed band by band as multiple 2D
images.

3.1. Experimental Settings

In the experiments, we normalize all MSIs in the CAVE
dataset to the interval [0 1]. Gaussian noise is added with
mean of 0 and variance of ν = 0.1 on the whole MSI. Groups
of an MSI are clustered by using the k-means++ [24], and
each cluster forms a tensor group. The two dictionaries are
initialized by extracting mode-n (n =1,2) vectors random-
ly of X (k) with the redundancy ratio of τa = τe = 1.5.
The spatial window size is set as dL = dW = 7 with
the step pL = pW = 4. For the parameters in the pro-
posed algorithm, we empirically set ρ = 0.1, µ = 1.3, and
β = [β1, β2, β3] = [0.1, 0.45, 0.45] where the small weight
of β1 on space means the weak local correlation. To ease
the difficulty in the process of parameter tuning, we sim-
ply set λ(k) = 20ν

√
s(k), where λ(k) and ν has a positive

correlation.

3.2. Experimental Results

All the 32 MSIs are used in the experiment for evaluating
the performance of different methods, and we provide the
averaged performance in the results. In the comparison, we
employ four different performance indicators including peak
signal-to-noise ratio (PSNR), structural similarity (SSIM),
spectral angle mapper (SAM) [25] and dimensionless global
relative error of synthesis (ERGAS) [26]. Recovered MSIs
with higher PSNR and SSIM or lower SAM and ERGAS
are usually considered as images with good quality. PSNR
and SSIM are two conventional spatial-based indexes, while
ERGAS and SAM are spectral-based evaluation indexes. The
averaged denoising results are given in Table 1. It can be
observed that the proposed method outperforms all the com-
peting methods for all the four different quality indicators.

Index Method
K-SVD BM3D BM4D Tdl KBRreg Ours

PSNR 30.238 37.219 39.763 39.479 40.722 41.158
SSIM 0.603 0.918 0.941 0.946 0.944 0.967
SAM 0.552 0.220 0.230 0.178 0.259 0.115

ERGAS 173.914 78.682 58.678 60.373 53.335 50.522

Table 1. Average performance.
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Fig. 2. Experimental results of the “photo and face” MSI
in the CAVE dataset. (a) The denoised image of the 25th
band and corresponding PSNR; (b) An illustration of a re-
covered Z(k) which has a low-rank structure; (c) The learned
space dictionary Da(top) and the learned spectral dictionary
De(bottom).

For visualizing the proposed method, we display the de-
noising results on a CAVE MSI in Fig. 2(a), where we zoom
in part of the image for better comparison. In Fig. 2(b), we
show a recovered tensor representation Z(k), which exhibit-
s a low-rank structure as we expected. The learned dictio-
naries are given in Fig. 2(c). Atoms of the learned spectral
dictionary De correspond to various spectral feature of the
scene. Atoms in the spatial dictionary Da represent the spatial
features of the MSI. To enhance visualization, we reorganize
each atom (column) into a patch of the size 7× 7.

4. CONCLUSIONS

This paper presents an effective tensor dictionary learning
method for denoising high dimensional MSIs. The proposed
method exploits the low-rank structure in different groups of
similar blocks in the MSI and also exploits shared dictionaries
among different groups, which makes the proposed method
distinct to existing methods. Experimental results show the
superior performance of the proposed method for denoising
MSIs.
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